#include "builtin.h" #include "util/util.h" #include "util/cache.h" #include "util/symbol.h" #include "util/thread.h" #include "util/header.h" #include "util/parse-options.h" #include "perf.h" #include "util/debug.h" #include "util/trace-event.h" #include static char const *input_name = "perf.data"; static int input; static unsigned long page_size; static unsigned long mmap_window = 32; static unsigned long total_comm = 0; static struct rb_root threads; static struct thread *last_match; static struct perf_header *header; static u64 sample_type; /* * Scheduler benchmarks */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PR_SET_NAME 15 /* Set process name */ #define BUG_ON(x) assert(!(x)) #define DEBUG 0 typedef unsigned long long nsec_t; #define printk(x...) do { printf(x); fflush(stdout); } while (0) nsec_t prev_printk; #define __dprintk(x,y...) do { \ nsec_t __now = get_nsecs(), __delta = __now - prev_printk; \ \ prev_printk = __now; \ \ printf("%.3f [%Ld] [%.3f]: " x, (double)__now/1e6, __now, (double)__delta/1e6, y);\ } while (0) #if !DEBUG # define dprintk(x...) do { } while (0) #else # define dprintk(x...) __dprintk(x) #endif #define __DP() __dprintk("parent: line %d\n", __LINE__) #define DP() dprintk("parent: line %d\n", __LINE__) #define D() dprintk("task %ld: line %d\n", this_task->nr, __LINE__) static nsec_t run_measurement_overhead; static nsec_t sleep_measurement_overhead; static nsec_t get_nsecs(void) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec * 1000000000ULL + ts.tv_nsec; } static void burn_nsecs(nsec_t nsecs) { nsec_t T0 = get_nsecs(), T1; do { T1 = get_nsecs(); } while (T1 + run_measurement_overhead < T0 + nsecs); } static void sleep_nsecs(nsec_t nsecs) { struct timespec ts; ts.tv_nsec = nsecs % 999999999; ts.tv_sec = nsecs / 999999999; nanosleep(&ts, NULL); } static void calibrate_run_measurement_overhead(void) { nsec_t T0, T1, delta, min_delta = 1000000000ULL; int i; for (i = 0; i < 10; i++) { T0 = get_nsecs(); burn_nsecs(0); T1 = get_nsecs(); delta = T1-T0; min_delta = min(min_delta, delta); } run_measurement_overhead = min_delta; printk("run measurement overhead: %Ld nsecs\n", min_delta); } static void calibrate_sleep_measurement_overhead(void) { nsec_t T0, T1, delta, min_delta = 1000000000ULL; int i; for (i = 0; i < 10; i++) { T0 = get_nsecs(); sleep_nsecs(10000); T1 = get_nsecs(); delta = T1-T0; min_delta = min(min_delta, delta); } min_delta -= 10000; sleep_measurement_overhead = min_delta; printk("sleep measurement overhead: %Ld nsecs\n", min_delta); } #define COMM_LEN 20 #define SYM_LEN 129 #define MAX_PID 65536 static unsigned long nr_tasks; struct sched_event; struct task_desc { unsigned long nr; unsigned long pid; char comm[COMM_LEN]; unsigned long nr_events; unsigned long curr_event; struct sched_event **events; pthread_t thread; sem_t sleep_sem; sem_t ready_for_work; sem_t work_done_sem; nsec_t cpu_usage; }; enum sched_event_type { SCHED_EVENT_RUN, SCHED_EVENT_SLEEP, SCHED_EVENT_WAKEUP, }; struct sched_event { enum sched_event_type type; nsec_t timestamp; nsec_t duration; unsigned long nr; int specific_wait; sem_t *wait_sem; struct task_desc *wakee; }; static struct task_desc *pid_to_task[MAX_PID]; static struct task_desc **tasks; static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER; static nsec_t start_time; static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER; static unsigned long nr_run_events; static unsigned long nr_sleep_events; static unsigned long nr_wakeup_events; static unsigned long nr_sleep_corrections; static unsigned long nr_run_events_optimized; static struct sched_event * get_new_event(struct task_desc *task, nsec_t timestamp) { struct sched_event *event = calloc(1, sizeof(*event)); unsigned long idx = task->nr_events; size_t size; event->timestamp = timestamp; event->nr = idx; task->nr_events++; size = sizeof(struct sched_event *) * task->nr_events; task->events = realloc(task->events, size); BUG_ON(!task->events); task->events[idx] = event; return event; } static struct sched_event *last_event(struct task_desc *task) { if (!task->nr_events) return NULL; return task->events[task->nr_events - 1]; } static void add_sched_event_run(struct task_desc *task, nsec_t timestamp, u64 duration) { struct sched_event *event, *curr_event = last_event(task); /* * optimize an existing RUN event by merging this one * to it: */ if (curr_event && curr_event->type == SCHED_EVENT_RUN) { nr_run_events_optimized++; curr_event->duration += duration; return; } event = get_new_event(task, timestamp); event->type = SCHED_EVENT_RUN; event->duration = duration; nr_run_events++; } static unsigned long targetless_wakeups; static unsigned long multitarget_wakeups; static void add_sched_event_wakeup(struct task_desc *task, nsec_t timestamp, struct task_desc *wakee) { struct sched_event *event, *wakee_event; event = get_new_event(task, timestamp); event->type = SCHED_EVENT_WAKEUP; event->wakee = wakee; wakee_event = last_event(wakee); if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { targetless_wakeups++; return; } if (wakee_event->wait_sem) { multitarget_wakeups++; return; } wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem)); sem_init(wakee_event->wait_sem, 0, 0); wakee_event->specific_wait = 1; event->wait_sem = wakee_event->wait_sem; nr_wakeup_events++; } static void add_sched_event_sleep(struct task_desc *task, nsec_t timestamp, unsigned long uninterruptible __used) { struct sched_event *event = get_new_event(task, timestamp); event->type = SCHED_EVENT_SLEEP; nr_sleep_events++; } static struct task_desc *register_pid(unsigned long pid, const char *comm) { struct task_desc *task; BUG_ON(pid >= MAX_PID); task = pid_to_task[pid]; if (task) return task; task = calloc(1, sizeof(*task)); task->pid = pid; task->nr = nr_tasks; strcpy(task->comm, comm); /* * every task starts in sleeping state - this gets ignored * if there's no wakeup pointing to this sleep state: */ add_sched_event_sleep(task, 0, 0); pid_to_task[pid] = task; nr_tasks++; tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *)); BUG_ON(!tasks); tasks[task->nr] = task; printk("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm); return task; } static int first_trace_line = 1; static nsec_t first_timestamp; static nsec_t prev_timestamp; void parse_line(char *line); void parse_line(char *line) { unsigned long param1 = 0, param2 = 0; char comm[COMM_LEN], comm2[COMM_LEN]; unsigned long pid, pid2, timestamp0; struct task_desc *task, *task2; char func_str[SYM_LEN]; nsec_t timestamp; int ret; //" 0 0D.s3 0us+: try_to_wake_up (1 0)" ret = sscanf(line, "%20s %5ld %*s %ldus%*c:" " %128s <%20s %ld> (%ld %ld)\n", comm, &pid, ×tamp0, func_str, comm2, &pid2, ¶m1, ¶m2); dprintk("ret: %d\n", ret); if (ret != 8) return; timestamp = timestamp0 * 1000LL; if (first_trace_line) { first_trace_line = 0; first_timestamp = timestamp; } timestamp -= first_timestamp; BUG_ON(timestamp < prev_timestamp); prev_timestamp = timestamp; dprintk("parsed: %s - %ld %Ld: %s - <%s %ld> (%ld %ld)\n", comm, pid, timestamp, func_str, comm2, pid2, param1, param2); task = register_pid(pid, comm); task2 = register_pid(pid2, comm2); if (!strcmp(func_str, "update_curr")) { dprintk("%Ld: task %ld runs for %ld nsecs\n", timestamp, task->nr, param1); add_sched_event_run(task, timestamp, param1); } else if (!strcmp(func_str, "try_to_wake_up")) { dprintk("%Ld: task %ld wakes up task %ld\n", timestamp, task->nr, task2->nr); add_sched_event_wakeup(task, timestamp, task2); } else if (!strcmp(func_str, "deactivate_task")) { dprintk("%Ld: task %ld goes to sleep (uninterruptible: %ld)\n", timestamp, task->nr, param1); add_sched_event_sleep(task, timestamp, param1); } } static void print_task_traces(void) { struct task_desc *task; unsigned long i; for (i = 0; i < nr_tasks; i++) { task = tasks[i]; printk("task %6ld (%20s:%10ld), nr_events: %ld\n", task->nr, task->comm, task->pid, task->nr_events); } } static void add_cross_task_wakeups(void) { struct task_desc *task1, *task2; unsigned long i, j; for (i = 0; i < nr_tasks; i++) { task1 = tasks[i]; j = i + 1; if (j == nr_tasks) j = 0; task2 = tasks[j]; add_sched_event_wakeup(task1, 0, task2); } } static void process_sched_event(struct task_desc *this_task __used, struct sched_event *event) { int ret = 0; nsec_t now; long long delta; now = get_nsecs(); delta = start_time + event->timestamp - now; dprintk("task %ld, event #%ld, %Ld, delta: %.3f (%Ld)\n", this_task->nr, event->nr, event->timestamp, (double)delta/1e6, delta); if (0 && delta > 0) { dprintk("%.3f: task %ld FIX %.3f\n", (double)event->timestamp/1e6, this_task->nr, (double)delta/1e6); sleep_nsecs(start_time + event->timestamp - now); nr_sleep_corrections++; } switch (event->type) { case SCHED_EVENT_RUN: dprintk("%.3f: task %ld RUN for %.3f\n", (double)event->timestamp/1e6, this_task->nr, (double)event->duration/1e6); burn_nsecs(event->duration); break; case SCHED_EVENT_SLEEP: dprintk("%.3f: task %ld %s SLEEP\n", (double)event->timestamp/1e6, this_task->nr, event->wait_sem ? "" : "SKIP"); if (event->wait_sem) ret = sem_wait(event->wait_sem); BUG_ON(ret); break; case SCHED_EVENT_WAKEUP: dprintk("%.3f: task %ld WAKEUP => task %ld\n", (double)event->timestamp/1e6, this_task->nr, event->wakee->nr); if (event->wait_sem) ret = sem_post(event->wait_sem); BUG_ON(ret); break; default: BUG_ON(1); } } static nsec_t get_cpu_usage_nsec_parent(void) { struct rusage ru; nsec_t sum; int err; err = getrusage(RUSAGE_SELF, &ru); BUG_ON(err); sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3; sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3; return sum; } static nsec_t get_cpu_usage_nsec_self(void) { char filename [] = "/proc/1234567890/sched"; unsigned long msecs, nsecs; char *line = NULL; nsec_t total = 0; size_t len = 0; ssize_t chars; FILE *file; int ret; sprintf(filename, "/proc/%d/sched", getpid()); file = fopen(filename, "r"); BUG_ON(!file); while ((chars = getline(&line, &len, file)) != -1) { dprintk("got line with length %zu :\n", chars); dprintk("%s", line); ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n", &msecs, &nsecs); if (ret == 2) { total = msecs*1e6 + nsecs; dprintk("total: (%ld.%06ld) %Ld\n", msecs, nsecs, total); break; } } if (line) free(line); fclose(file); return total; } static void *thread_func(void *ctx) { struct task_desc *this_task = ctx; nsec_t cpu_usage_0, cpu_usage_1; unsigned long i, ret; char comm2[22]; dprintk("task %ld started up.\n", this_task->nr); sprintf(comm2, ":%s", this_task->comm); prctl(PR_SET_NAME, comm2); again: ret = sem_post(&this_task->ready_for_work); BUG_ON(ret); D(); ret = pthread_mutex_lock(&start_work_mutex); BUG_ON(ret); ret = pthread_mutex_unlock(&start_work_mutex); BUG_ON(ret); D(); cpu_usage_0 = get_cpu_usage_nsec_self(); for (i = 0; i < this_task->nr_events; i++) { this_task->curr_event = i; process_sched_event(this_task, this_task->events[i]); } cpu_usage_1 = get_cpu_usage_nsec_self(); this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; dprintk("task %ld cpu usage: %0.3f msecs\n", this_task->nr, (double)this_task->cpu_usage / 1e6); D(); ret = sem_post(&this_task->work_done_sem); BUG_ON(ret); D(); ret = pthread_mutex_lock(&work_done_wait_mutex); BUG_ON(ret); ret = pthread_mutex_unlock(&work_done_wait_mutex); BUG_ON(ret); D(); goto again; } static void create_tasks(void) { struct task_desc *task; pthread_attr_t attr; unsigned long i; int err; err = pthread_attr_init(&attr); BUG_ON(err); err = pthread_attr_setstacksize(&attr, (size_t)(16*1024)); BUG_ON(err); err = pthread_mutex_lock(&start_work_mutex); BUG_ON(err); err = pthread_mutex_lock(&work_done_wait_mutex); BUG_ON(err); for (i = 0; i < nr_tasks; i++) { task = tasks[i]; sem_init(&task->sleep_sem, 0, 0); sem_init(&task->ready_for_work, 0, 0); sem_init(&task->work_done_sem, 0, 0); task->curr_event = 0; err = pthread_create(&task->thread, &attr, thread_func, task); BUG_ON(err); } } static nsec_t cpu_usage; static nsec_t runavg_cpu_usage; static nsec_t parent_cpu_usage; static nsec_t runavg_parent_cpu_usage; static void wait_for_tasks(void) { nsec_t cpu_usage_0, cpu_usage_1; struct task_desc *task; unsigned long i, ret; DP(); start_time = get_nsecs(); DP(); cpu_usage = 0; pthread_mutex_unlock(&work_done_wait_mutex); for (i = 0; i < nr_tasks; i++) { task = tasks[i]; ret = sem_wait(&task->ready_for_work); BUG_ON(ret); sem_init(&task->ready_for_work, 0, 0); } ret = pthread_mutex_lock(&work_done_wait_mutex); BUG_ON(ret); cpu_usage_0 = get_cpu_usage_nsec_parent(); pthread_mutex_unlock(&start_work_mutex); #if 0 for (i = 0; i < nr_tasks; i++) { unsigned long missed; task = tasks[i]; while (task->curr_event + 1 < task->nr_events) { dprintk("parent waiting for %ld (%ld != %ld)\n", i, task->curr_event, task->nr_events); sleep_nsecs(100000000); } missed = task->nr_events - 1 - task->curr_event; if (missed) printk("task %ld missed events: %ld\n", i, missed); ret = sem_post(&task->sleep_sem); BUG_ON(ret); } #endif DP(); for (i = 0; i < nr_tasks; i++) { task = tasks[i]; ret = sem_wait(&task->work_done_sem); BUG_ON(ret); sem_init(&task->work_done_sem, 0, 0); cpu_usage += task->cpu_usage; task->cpu_usage = 0; } cpu_usage_1 = get_cpu_usage_nsec_parent(); if (!runavg_cpu_usage) runavg_cpu_usage = cpu_usage; runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10; parent_cpu_usage = cpu_usage_1 - cpu_usage_0; if (!runavg_parent_cpu_usage) runavg_parent_cpu_usage = parent_cpu_usage; runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 + parent_cpu_usage)/10; ret = pthread_mutex_lock(&start_work_mutex); BUG_ON(ret); for (i = 0; i < nr_tasks; i++) { task = tasks[i]; sem_init(&task->sleep_sem, 0, 0); task->curr_event = 0; } } static int __cmd_sched(void); static void parse_trace(void) { __cmd_sched(); printk("nr_run_events: %ld\n", nr_run_events); printk("nr_sleep_events: %ld\n", nr_sleep_events); printk("nr_wakeup_events: %ld\n", nr_wakeup_events); if (targetless_wakeups) printk("target-less wakeups: %ld\n", targetless_wakeups); if (multitarget_wakeups) printk("multi-target wakeups: %ld\n", multitarget_wakeups); if (nr_run_events_optimized) printk("run events optimized: %ld\n", nr_run_events_optimized); } static unsigned long nr_runs; static nsec_t sum_runtime; static nsec_t sum_fluct; static nsec_t run_avg; static void run_one_test(void) { nsec_t T0, T1, delta, avg_delta, fluct, std_dev; T0 = get_nsecs(); wait_for_tasks(); T1 = get_nsecs(); delta = T1 - T0; sum_runtime += delta; nr_runs++; avg_delta = sum_runtime / nr_runs; if (delta < avg_delta) fluct = avg_delta - delta; else fluct = delta - avg_delta; sum_fluct += fluct; std_dev = sum_fluct / nr_runs / sqrt(nr_runs); if (!run_avg) run_avg = delta; run_avg = (run_avg*9 + delta)/10; printk("#%-3ld: %0.3f, ", nr_runs, (double)delta/1000000.0); #if 0 printk("%0.2f +- %0.2f, ", (double)avg_delta/1e6, (double)std_dev/1e6); #endif printk("ravg: %0.2f, ", (double)run_avg/1e6); printk("cpu: %0.2f / %0.2f", (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6); #if 0 /* * rusage statistics done by the parent, these are less * accurate than the sum_exec_runtime based statistics: */ printk(" [%0.2f / %0.2f]", (double)parent_cpu_usage/1e6, (double)runavg_parent_cpu_usage/1e6); #endif printk("\n"); if (nr_sleep_corrections) printk(" (%ld sleep corrections)\n", nr_sleep_corrections); nr_sleep_corrections = 0; } static void test_calibrations(void) { nsec_t T0, T1; T0 = get_nsecs(); burn_nsecs(1e6); T1 = get_nsecs(); printk("the run test took %Ld nsecs\n", T1-T0); T0 = get_nsecs(); sleep_nsecs(1e6); T1 = get_nsecs(); printk("the sleep test took %Ld nsecs\n", T1-T0); } static int process_comm_event(event_t *event, unsigned long offset, unsigned long head) { struct thread *thread; thread = threads__findnew(event->comm.pid, &threads, &last_match); dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n", (void *)(offset + head), (void *)(long)(event->header.size), event->comm.comm, event->comm.pid); if (thread == NULL || thread__set_comm(thread, event->comm.comm)) { dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n"); return -1; } total_comm++; return 0; } struct trace_wakeup_event { u32 size; u16 common_type; u8 common_flags; u8 common_preempt_count; u32 common_pid; u32 common_tgid; char comm[16]; u32 pid; u32 prio; u32 success; u32 cpu; }; static void process_sched_wakeup_event(struct trace_wakeup_event *wakeup_event, struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct task_desc *waker, *wakee; printf("sched_wakeup event %p\n", event); printf(" ... pid %d woke up %s/%d\n", wakeup_event->common_pid, wakeup_event->comm, wakeup_event->pid); waker = register_pid(wakeup_event->common_pid, ""); wakee = register_pid(wakeup_event->pid, wakeup_event->comm); add_sched_event_wakeup(waker, timestamp, wakee); } struct trace_switch_event { u32 size; u16 common_type; u8 common_flags; u8 common_preempt_count; u32 common_pid; u32 common_tgid; char prev_comm[16]; u32 prev_pid; u32 prev_prio; u64 prev_state; char next_comm[16]; u32 next_pid; u32 next_prio; }; #define MAX_CPUS 4096 unsigned long cpu_last_switched[MAX_CPUS]; static void process_sched_switch_event(struct trace_switch_event *switch_event, struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { struct task_desc *prev, *next; u64 timestamp0; s64 delta; printf("sched_switch event %p\n", event); if (cpu >= MAX_CPUS || cpu < 0) return; timestamp0 = cpu_last_switched[cpu]; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) die("hm, delta: %Ld < 0 ?\n", delta); printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n", switch_event->prev_comm, switch_event->prev_pid, switch_event->next_comm, switch_event->next_pid, delta); prev = register_pid(switch_event->prev_pid, switch_event->prev_comm); next = register_pid(switch_event->next_pid, switch_event->next_comm); cpu_last_switched[cpu] = timestamp; add_sched_event_run(prev, timestamp, delta); } struct trace_fork_event { u32 size; u16 common_type; u8 common_flags; u8 common_preempt_count; u32 common_pid; u32 common_tgid; char parent_comm[16]; u32 parent_pid; char child_comm[16]; u32 child_pid; }; static void process_sched_fork_event(struct trace_fork_event *fork_event, struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { printf("sched_fork event %p\n", event); printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid); printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid); register_pid(fork_event->parent_pid, fork_event->parent_comm); register_pid(fork_event->child_pid, fork_event->child_comm); } static void process_sched_exit_event(struct event *event, int cpu __used, u64 timestamp __used, struct thread *thread __used) { printf("sched_exit event %p\n", event); } static void process_raw_event(event_t *raw_event, void *more_data, int cpu, u64 timestamp, struct thread *thread) { struct { u32 size; char data[0]; } *raw = more_data; struct event *event; int type; type = trace_parse_common_type(raw->data); event = trace_find_event(type); /* * FIXME: better resolve from pid from the struct trace_entry * field, although it should be the same than this perf * event pid */ printf("id %d, type: %d, event: %s\n", raw_event->header.type, type, event->name); if (!strcmp(event->name, "sched_switch")) process_sched_switch_event(more_data, event, cpu, timestamp, thread); if (!strcmp(event->name, "sched_wakeup")) process_sched_wakeup_event(more_data, event, cpu, timestamp, thread); if (!strcmp(event->name, "sched_wakeup_new")) process_sched_wakeup_event(more_data, event, cpu, timestamp, thread); if (!strcmp(event->name, "sched_process_fork")) process_sched_fork_event(more_data, event, cpu, timestamp, thread); if (!strcmp(event->name, "sched_process_exit")) process_sched_exit_event(event, cpu, timestamp, thread); } static int process_sample_event(event_t *event, unsigned long offset, unsigned long head) { char level; int show = 0; struct dso *dso = NULL; struct thread *thread; u64 ip = event->ip.ip; u64 timestamp = -1; u32 cpu = -1; u64 period = 1; void *more_data = event->ip.__more_data; int cpumode; thread = threads__findnew(event->ip.pid, &threads, &last_match); if (sample_type & PERF_SAMPLE_TIME) { timestamp = *(u64 *)more_data; more_data += sizeof(u64); } if (sample_type & PERF_SAMPLE_CPU) { cpu = *(u32 *)more_data; more_data += sizeof(u32); more_data += sizeof(u32); /* reserved */ } if (sample_type & PERF_SAMPLE_PERIOD) { period = *(u64 *)more_data; more_data += sizeof(u64); } dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n", (void *)(offset + head), (void *)(long)(event->header.size), event->header.misc, event->ip.pid, event->ip.tid, (void *)(long)ip, (long long)period); dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid); if (thread == NULL) { eprintf("problem processing %d event, skipping it.\n", event->header.type); return -1; } cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK; if (cpumode == PERF_EVENT_MISC_KERNEL) { show = SHOW_KERNEL; level = 'k'; dso = kernel_dso; dump_printf(" ...... dso: %s\n", dso->name); } else if (cpumode == PERF_EVENT_MISC_USER) { show = SHOW_USER; level = '.'; } else { show = SHOW_HV; level = 'H'; dso = hypervisor_dso; dump_printf(" ...... dso: [hypervisor]\n"); } if (sample_type & PERF_SAMPLE_RAW) process_raw_event(event, more_data, cpu, timestamp, thread); return 0; } static int process_event(event_t *event, unsigned long offset, unsigned long head) { trace_event(event); switch (event->header.type) { case PERF_EVENT_MMAP ... PERF_EVENT_LOST: return 0; case PERF_EVENT_COMM: return process_comm_event(event, offset, head); case PERF_EVENT_EXIT ... PERF_EVENT_READ: return 0; case PERF_EVENT_SAMPLE: return process_sample_event(event, offset, head); case PERF_EVENT_MAX: default: return -1; } return 0; } static int __cmd_sched(void) { int ret, rc = EXIT_FAILURE; unsigned long offset = 0; unsigned long head = 0; struct stat perf_stat; event_t *event; uint32_t size; char *buf; trace_report(); register_idle_thread(&threads, &last_match); input = open(input_name, O_RDONLY); if (input < 0) { perror("failed to open file"); exit(-1); } ret = fstat(input, &perf_stat); if (ret < 0) { perror("failed to stat file"); exit(-1); } if (!perf_stat.st_size) { fprintf(stderr, "zero-sized file, nothing to do!\n"); exit(0); } header = perf_header__read(input); head = header->data_offset; sample_type = perf_header__sample_type(header); if (!(sample_type & PERF_SAMPLE_RAW)) die("No trace sample to read. Did you call perf record " "without -R?"); if (load_kernel() < 0) { perror("failed to load kernel symbols"); return EXIT_FAILURE; } remap: buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ, MAP_SHARED, input, offset); if (buf == MAP_FAILED) { perror("failed to mmap file"); exit(-1); } more: event = (event_t *)(buf + head); size = event->header.size; if (!size) size = 8; if (head + event->header.size >= page_size * mmap_window) { unsigned long shift = page_size * (head / page_size); int res; res = munmap(buf, page_size * mmap_window); assert(res == 0); offset += shift; head -= shift; goto remap; } size = event->header.size; if (!size || process_event(event, offset, head) < 0) { /* * assume we lost track of the stream, check alignment, and * increment a single u64 in the hope to catch on again 'soon'. */ if (unlikely(head & 7)) head &= ~7ULL; size = 8; } head += size; if (offset + head < (unsigned long)perf_stat.st_size) goto more; rc = EXIT_SUCCESS; close(input); return rc; } static const char * const annotate_usage[] = { "perf trace [] ", NULL }; static const struct option options[] = { OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_BOOLEAN('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_END() }; int cmd_sched(int argc, const char **argv, const char *prefix __used) { long nr_iterations = 10, i; symbol__init(); page_size = getpagesize(); argc = parse_options(argc, argv, options, annotate_usage, 0); if (argc) { /* * Special case: if there's an argument left then assume tha * it's a symbol filter: */ if (argc > 1) usage_with_options(annotate_usage, options); } // setup_pager(); calibrate_run_measurement_overhead(); calibrate_sleep_measurement_overhead(); test_calibrations(); parse_trace(); print_task_traces(); add_cross_task_wakeups(); create_tasks(); printk("------------------------------------------------------------\n"); for (i = 0; i < nr_iterations; i++) run_one_test(); return 0; }