1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/*
* linux/boot/head.S
*
* Copyright (C) 1991, 1992, 1993 Linus Torvalds
*/
/*
* head.S contains the 32-bit startup code.
*
* NOTE!!! Startup happens at absolute address 0x00001000, which is also where
* the page directory will exist. The startup code will be overwritten by
* the page directory. [According to comments etc elsewhere on a compressed
* kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
*
* Page 0 is deliberately kept safe, since System Management Mode code in
* laptops may need to access the BIOS data stored there. This is also
* useful for future device drivers that either access the BIOS via VM86
* mode.
*/
/*
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
*/
.text
#include <linux/linkage.h>
#include <asm/segment.h>
.globl startup_32
startup_32:
cld
cli
movl $(__BOOT_DS),%eax
movl %eax,%ds
movl %eax,%es
movl %eax,%fs
movl %eax,%gs
lss stack_start,%esp
xorl %eax,%eax
1: incl %eax # check that A20 really IS enabled
movl %eax,0x000000 # loop forever if it isn't
cmpl %eax,0x100000
je 1b
/*
* Initialize eflags. Some BIOS's leave bits like NT set. This would
* confuse the debugger if this code is traced.
* XXX - best to initialize before switching to protected mode.
*/
pushl $0
popfl
/*
* Clear BSS
*/
xorl %eax,%eax
movl $_edata,%edi
movl $_end,%ecx
subl %edi,%ecx
cld
rep
stosb
/*
* Do the decompression, and jump to the new kernel..
*/
subl $16,%esp # place for structure on the stack
movl %esp,%eax
pushl %esi # real mode pointer as second arg
pushl %eax # address of structure as first arg
call decompress_kernel
orl %eax,%eax
jnz 3f
popl %esi # discard address
popl %esi # real mode pointer
xorl %ebx,%ebx
ljmp $(__BOOT_CS), $CONFIG_PHYSICAL_START
/*
* We come here, if we were loaded high.
* We need to move the move-in-place routine down to 0x1000
* and then start it with the buffer addresses in registers,
* which we got from the stack.
*/
3:
movl $move_routine_start,%esi
movl $0x1000,%edi
movl $move_routine_end,%ecx
subl %esi,%ecx
addl $3,%ecx
shrl $2,%ecx
cld
rep
movsl
popl %esi # discard the address
popl %ebx # real mode pointer
popl %esi # low_buffer_start
popl %ecx # lcount
popl %edx # high_buffer_start
popl %eax # hcount
movl $CONFIG_PHYSICAL_START,%edi
cli # make sure we don't get interrupted
ljmp $(__BOOT_CS), $0x1000 # and jump to the move routine
/*
* Routine (template) for moving the decompressed kernel in place,
* if we were high loaded. This _must_ PIC-code !
*/
move_routine_start:
movl %ecx,%ebp
shrl $2,%ecx
rep
movsl
movl %ebp,%ecx
andl $3,%ecx
rep
movsb
movl %edx,%esi
movl %eax,%ecx # NOTE: rep movsb won't move if %ecx == 0
addl $3,%ecx
shrl $2,%ecx
rep
movsl
movl %ebx,%esi # Restore setup pointer
xorl %ebx,%ebx
ljmp $(__BOOT_CS), $CONFIG_PHYSICAL_START
move_routine_end:
|