1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/*
* Copyright (C) 2001, 2004 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* Adapted from arch/i386/kernel/ldt.c
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/vmalloc.h>
#include <asm/uaccess.h>
#include "ia32priv.h"
/*
* read_ldt() is not really atomic - this is not a problem since synchronization of reads
* and writes done to the LDT has to be assured by user-space anyway. Writes are atomic,
* to protect the security checks done on new descriptors.
*/
static int
read_ldt (void __user *ptr, unsigned long bytecount)
{
unsigned long bytes_left, n;
char __user *src, *dst;
char buf[256]; /* temporary buffer (don't overflow kernel stack!) */
if (bytecount > IA32_LDT_ENTRIES*IA32_LDT_ENTRY_SIZE)
bytecount = IA32_LDT_ENTRIES*IA32_LDT_ENTRY_SIZE;
bytes_left = bytecount;
src = (void __user *) IA32_LDT_OFFSET;
dst = ptr;
while (bytes_left) {
n = sizeof(buf);
if (n > bytes_left)
n = bytes_left;
/*
* We know we're reading valid memory, but we still must guard against
* running out of memory.
*/
if (__copy_from_user(buf, src, n))
return -EFAULT;
if (copy_to_user(dst, buf, n))
return -EFAULT;
src += n;
dst += n;
bytes_left -= n;
}
return bytecount;
}
static int
read_default_ldt (void __user * ptr, unsigned long bytecount)
{
unsigned long size;
int err;
/* XXX fix me: should return equivalent of default_ldt[0] */
err = 0;
size = 8;
if (size > bytecount)
size = bytecount;
err = size;
if (clear_user(ptr, size))
err = -EFAULT;
return err;
}
static int
write_ldt (void __user * ptr, unsigned long bytecount, int oldmode)
{
struct ia32_user_desc ldt_info;
__u64 entry;
int ret;
if (bytecount != sizeof(ldt_info))
return -EINVAL;
if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
return -EFAULT;
if (ldt_info.entry_number >= IA32_LDT_ENTRIES)
return -EINVAL;
if (ldt_info.contents == 3) {
if (oldmode)
return -EINVAL;
if (ldt_info.seg_not_present == 0)
return -EINVAL;
}
if (ldt_info.base_addr == 0 && ldt_info.limit == 0
&& (oldmode || (ldt_info.contents == 0 && ldt_info.read_exec_only == 1
&& ldt_info.seg_32bit == 0 && ldt_info.limit_in_pages == 0
&& ldt_info.seg_not_present == 1 && ldt_info.useable == 0)))
/* allow LDTs to be cleared by the user */
entry = 0;
else
/* we must set the "Accessed" bit as IVE doesn't emulate it */
entry = IA32_SEG_DESCRIPTOR(ldt_info.base_addr, ldt_info.limit,
(((ldt_info.read_exec_only ^ 1) << 1)
| (ldt_info.contents << 2)) | 1,
1, 3, ldt_info.seg_not_present ^ 1,
(oldmode ? 0 : ldt_info.useable),
ldt_info.seg_32bit,
ldt_info.limit_in_pages);
/*
* Install the new entry. We know we're accessing valid (mapped) user-level
* memory, but we still need to guard against out-of-memory, hence we must use
* put_user().
*/
ret = __put_user(entry, (__u64 __user *) IA32_LDT_OFFSET + ldt_info.entry_number);
ia32_load_segment_descriptors(current);
return ret;
}
asmlinkage int
sys32_modify_ldt (int func, unsigned int ptr, unsigned int bytecount)
{
int ret = -ENOSYS;
switch (func) {
case 0:
ret = read_ldt(compat_ptr(ptr), bytecount);
break;
case 1:
ret = write_ldt(compat_ptr(ptr), bytecount, 1);
break;
case 2:
ret = read_default_ldt(compat_ptr(ptr), bytecount);
break;
case 0x11:
ret = write_ldt(compat_ptr(ptr), bytecount, 0);
break;
}
return ret;
}
|