1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
|
/*
* Kernel support for the ptrace() and syscall tracing interfaces.
*
* Copyright (C) 1999-2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* Derived from the x86 and Alpha versions.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/smp_lock.h>
#include <linux/user.h>
#include <linux/security.h>
#include <linux/audit.h>
#include <linux/signal.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace_offsets.h>
#include <asm/rse.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unwind.h>
#ifdef CONFIG_PERFMON
#include <asm/perfmon.h>
#endif
#include "entry.h"
/*
* Bits in the PSR that we allow ptrace() to change:
* be, up, ac, mfl, mfh (the user mask; five bits total)
* db (debug breakpoint fault; one bit)
* id (instruction debug fault disable; one bit)
* dd (data debug fault disable; one bit)
* ri (restart instruction; two bits)
* is (instruction set; one bit)
*/
#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
| IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
#define PFM_MASK MASK(38)
#define PTRACE_DEBUG 0
#if PTRACE_DEBUG
# define dprintk(format...) printk(format)
# define inline
#else
# define dprintk(format...)
#endif
/* Return TRUE if PT was created due to kernel-entry via a system-call. */
static inline int
in_syscall (struct pt_regs *pt)
{
return (long) pt->cr_ifs >= 0;
}
/*
* Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
* bitset where bit i is set iff the NaT bit of register i is set.
*/
unsigned long
ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
{
# define GET_BITS(first, last, unat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long nbits = (last - first + 1); \
unsigned long mask = MASK(nbits) << first; \
unsigned long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotr(unat, dist) & mask; \
})
unsigned long val;
/*
* Registers that are stored consecutively in struct pt_regs
* can be handled in parallel. If the register order in
* struct_pt_regs changes, this code MUST be updated.
*/
val = GET_BITS( 1, 1, scratch_unat);
val |= GET_BITS( 2, 3, scratch_unat);
val |= GET_BITS(12, 13, scratch_unat);
val |= GET_BITS(14, 14, scratch_unat);
val |= GET_BITS(15, 15, scratch_unat);
val |= GET_BITS( 8, 11, scratch_unat);
val |= GET_BITS(16, 31, scratch_unat);
return val;
# undef GET_BITS
}
/*
* Set the NaT bits for the scratch registers according to NAT and
* return the resulting unat (assuming the scratch registers are
* stored in PT).
*/
unsigned long
ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
{
# define PUT_BITS(first, last, nat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long nbits = (last - first + 1); \
unsigned long mask = MASK(nbits) << first; \
long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotl(nat & mask, dist); \
})
unsigned long scratch_unat;
/*
* Registers that are stored consecutively in struct pt_regs
* can be handled in parallel. If the register order in
* struct_pt_regs changes, this code MUST be updated.
*/
scratch_unat = PUT_BITS( 1, 1, nat);
scratch_unat |= PUT_BITS( 2, 3, nat);
scratch_unat |= PUT_BITS(12, 13, nat);
scratch_unat |= PUT_BITS(14, 14, nat);
scratch_unat |= PUT_BITS(15, 15, nat);
scratch_unat |= PUT_BITS( 8, 11, nat);
scratch_unat |= PUT_BITS(16, 31, nat);
return scratch_unat;
# undef PUT_BITS
}
#define IA64_MLX_TEMPLATE 0x2
#define IA64_MOVL_OPCODE 6
void
ia64_increment_ip (struct pt_regs *regs)
{
unsigned long w0, ri = ia64_psr(regs)->ri + 1;
if (ri > 2) {
ri = 0;
regs->cr_iip += 16;
} else if (ri == 2) {
get_user(w0, (char __user *) regs->cr_iip + 0);
if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
/*
* rfi'ing to slot 2 of an MLX bundle causes
* an illegal operation fault. We don't want
* that to happen...
*/
ri = 0;
regs->cr_iip += 16;
}
}
ia64_psr(regs)->ri = ri;
}
void
ia64_decrement_ip (struct pt_regs *regs)
{
unsigned long w0, ri = ia64_psr(regs)->ri - 1;
if (ia64_psr(regs)->ri == 0) {
regs->cr_iip -= 16;
ri = 2;
get_user(w0, (char __user *) regs->cr_iip + 0);
if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
/*
* rfi'ing to slot 2 of an MLX bundle causes
* an illegal operation fault. We don't want
* that to happen...
*/
ri = 1;
}
}
ia64_psr(regs)->ri = ri;
}
/*
* This routine is used to read an rnat bits that are stored on the
* kernel backing store. Since, in general, the alignment of the user
* and kernel are different, this is not completely trivial. In
* essence, we need to construct the user RNAT based on up to two
* kernel RNAT values and/or the RNAT value saved in the child's
* pt_regs.
*
* user rbs
*
* +--------+ <-- lowest address
* | slot62 |
* +--------+
* | rnat | 0x....1f8
* +--------+
* | slot00 | \
* +--------+ |
* | slot01 | > child_regs->ar_rnat
* +--------+ |
* | slot02 | / kernel rbs
* +--------+ +--------+
* <- child_regs->ar_bspstore | slot61 | <-- krbs
* +- - - - + +--------+
* | slot62 |
* +- - - - + +--------+
* | rnat |
* +- - - - + +--------+
* vrnat | slot00 |
* +- - - - + +--------+
* = =
* +--------+
* | slot00 | \
* +--------+ |
* | slot01 | > child_stack->ar_rnat
* +--------+ |
* | slot02 | /
* +--------+
* <--- child_stack->ar_bspstore
*
* The way to think of this code is as follows: bit 0 in the user rnat
* corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
* value. The kernel rnat value holding this bit is stored in
* variable rnat0. rnat1 is loaded with the kernel rnat value that
* form the upper bits of the user rnat value.
*
* Boundary cases:
*
* o when reading the rnat "below" the first rnat slot on the kernel
* backing store, rnat0/rnat1 are set to 0 and the low order bits are
* merged in from pt->ar_rnat.
*
* o when reading the rnat "above" the last rnat slot on the kernel
* backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
*/
static unsigned long
get_rnat (struct task_struct *task, struct switch_stack *sw,
unsigned long *krbs, unsigned long *urnat_addr,
unsigned long *urbs_end)
{
unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
unsigned long umask = 0, mask, m;
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
long num_regs, nbits;
struct pt_regs *pt;
pt = task_pt_regs(task);
kbsp = (unsigned long *) sw->ar_bspstore;
ubspstore = (unsigned long *) pt->ar_bspstore;
if (urbs_end < urnat_addr)
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
else
nbits = 63;
mask = MASK(nbits);
/*
* First, figure out which bit number slot 0 in user-land maps
* to in the kernel rnat. Do this by figuring out how many
* register slots we're beyond the user's backingstore and
* then computing the equivalent address in kernel space.
*/
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
shift = ia64_rse_slot_num(slot0_kaddr);
rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
rnat0_kaddr = rnat1_kaddr - 64;
if (ubspstore + 63 > urnat_addr) {
/* some bits need to be merged in from pt->ar_rnat */
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
urnat = (pt->ar_rnat & umask);
mask &= ~umask;
if (!mask)
return urnat;
}
m = mask << shift;
if (rnat0_kaddr >= kbsp)
rnat0 = sw->ar_rnat;
else if (rnat0_kaddr > krbs)
rnat0 = *rnat0_kaddr;
urnat |= (rnat0 & m) >> shift;
m = mask >> (63 - shift);
if (rnat1_kaddr >= kbsp)
rnat1 = sw->ar_rnat;
else if (rnat1_kaddr > krbs)
rnat1 = *rnat1_kaddr;
urnat |= (rnat1 & m) << (63 - shift);
return urnat;
}
/*
* The reverse of get_rnat.
*/
static void
put_rnat (struct task_struct *task, struct switch_stack *sw,
unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
unsigned long *urbs_end)
{
unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
long num_regs, nbits;
struct pt_regs *pt;
unsigned long cfm, *urbs_kargs;
pt = task_pt_regs(task);
kbsp = (unsigned long *) sw->ar_bspstore;
ubspstore = (unsigned long *) pt->ar_bspstore;
urbs_kargs = urbs_end;
if (in_syscall(pt)) {
/*
* If entered via syscall, don't allow user to set rnat bits
* for syscall args.
*/
cfm = pt->cr_ifs;
urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
}
if (urbs_kargs >= urnat_addr)
nbits = 63;
else {
if ((urnat_addr - 63) >= urbs_kargs)
return;
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
}
mask = MASK(nbits);
/*
* First, figure out which bit number slot 0 in user-land maps
* to in the kernel rnat. Do this by figuring out how many
* register slots we're beyond the user's backingstore and
* then computing the equivalent address in kernel space.
*/
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
shift = ia64_rse_slot_num(slot0_kaddr);
rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
rnat0_kaddr = rnat1_kaddr - 64;
if (ubspstore + 63 > urnat_addr) {
/* some bits need to be place in pt->ar_rnat: */
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
mask &= ~umask;
if (!mask)
return;
}
/*
* Note: Section 11.1 of the EAS guarantees that bit 63 of an
* rnat slot is ignored. so we don't have to clear it here.
*/
rnat0 = (urnat << shift);
m = mask << shift;
if (rnat0_kaddr >= kbsp)
sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
else if (rnat0_kaddr > krbs)
*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
rnat1 = (urnat >> (63 - shift));
m = mask >> (63 - shift);
if (rnat1_kaddr >= kbsp)
sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
else if (rnat1_kaddr > krbs)
*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
}
static inline int
on_kernel_rbs (unsigned long addr, unsigned long bspstore,
unsigned long urbs_end)
{
unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
urbs_end);
return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
}
/*
* Read a word from the user-level backing store of task CHILD. ADDR
* is the user-level address to read the word from, VAL a pointer to
* the return value, and USER_BSP gives the end of the user-level
* backing store (i.e., it's the address that would be in ar.bsp after
* the user executed a "cover" instruction).
*
* This routine takes care of accessing the kernel register backing
* store for those registers that got spilled there. It also takes
* care of calculating the appropriate RNaT collection words.
*/
long
ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
unsigned long user_rbs_end, unsigned long addr, long *val)
{
unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
struct pt_regs *child_regs;
size_t copied;
long ret;
urbs_end = (long *) user_rbs_end;
laddr = (unsigned long *) addr;
child_regs = task_pt_regs(child);
bspstore = (unsigned long *) child_regs->ar_bspstore;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
if (on_kernel_rbs(addr, (unsigned long) bspstore,
(unsigned long) urbs_end))
{
/*
* Attempt to read the RBS in an area that's actually
* on the kernel RBS => read the corresponding bits in
* the kernel RBS.
*/
rnat_addr = ia64_rse_rnat_addr(laddr);
ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
if (laddr == rnat_addr) {
/* return NaT collection word itself */
*val = ret;
return 0;
}
if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
/*
* It is implementation dependent whether the
* data portion of a NaT value gets saved on a
* st8.spill or RSE spill (e.g., see EAS 2.6,
* 4.4.4.6 Register Spill and Fill). To get
* consistent behavior across all possible
* IA-64 implementations, we return zero in
* this case.
*/
*val = 0;
return 0;
}
if (laddr < urbs_end) {
/*
* The desired word is on the kernel RBS and
* is not a NaT.
*/
regnum = ia64_rse_num_regs(bspstore, laddr);
*val = *ia64_rse_skip_regs(krbs, regnum);
return 0;
}
}
copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
if (copied != sizeof(ret))
return -EIO;
*val = ret;
return 0;
}
long
ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
unsigned long user_rbs_end, unsigned long addr, long val)
{
unsigned long *bspstore, *krbs, regnum, *laddr;
unsigned long *urbs_end = (long *) user_rbs_end;
struct pt_regs *child_regs;
laddr = (unsigned long *) addr;
child_regs = task_pt_regs(child);
bspstore = (unsigned long *) child_regs->ar_bspstore;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
if (on_kernel_rbs(addr, (unsigned long) bspstore,
(unsigned long) urbs_end))
{
/*
* Attempt to write the RBS in an area that's actually
* on the kernel RBS => write the corresponding bits
* in the kernel RBS.
*/
if (ia64_rse_is_rnat_slot(laddr))
put_rnat(child, child_stack, krbs, laddr, val,
urbs_end);
else {
if (laddr < urbs_end) {
regnum = ia64_rse_num_regs(bspstore, laddr);
*ia64_rse_skip_regs(krbs, regnum) = val;
}
}
} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
!= sizeof(val))
return -EIO;
return 0;
}
/*
* Calculate the address of the end of the user-level register backing
* store. This is the address that would have been stored in ar.bsp
* if the user had executed a "cover" instruction right before
* entering the kernel. If CFMP is not NULL, it is used to return the
* "current frame mask" that was active at the time the kernel was
* entered.
*/
unsigned long
ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
unsigned long *cfmp)
{
unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
long ndirty;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
bspstore = (unsigned long *) pt->ar_bspstore;
ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
if (in_syscall(pt))
ndirty += (cfm & 0x7f);
else
cfm &= ~(1UL << 63); /* clear valid bit */
if (cfmp)
*cfmp = cfm;
return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
}
/*
* Synchronize (i.e, write) the RSE backing store living in kernel
* space to the VM of the CHILD task. SW and PT are the pointers to
* the switch_stack and pt_regs structures, respectively.
* USER_RBS_END is the user-level address at which the backing store
* ends.
*/
long
ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
unsigned long user_rbs_start, unsigned long user_rbs_end)
{
unsigned long addr, val;
long ret;
/* now copy word for word from kernel rbs to user rbs: */
for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
if (ret < 0)
return ret;
if (access_process_vm(child, addr, &val, sizeof(val), 1)
!= sizeof(val))
return -EIO;
}
return 0;
}
static long
ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
unsigned long user_rbs_start, unsigned long user_rbs_end)
{
unsigned long addr, val;
long ret;
/* now copy word for word from user rbs to kernel rbs: */
for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
if (access_process_vm(child, addr, &val, sizeof(val), 0)
!= sizeof(val))
return -EIO;
ret = ia64_poke(child, sw, user_rbs_end, addr, val);
if (ret < 0)
return ret;
}
return 0;
}
typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
unsigned long, unsigned long);
static void do_sync_rbs(struct unw_frame_info *info, void *arg)
{
struct pt_regs *pt;
unsigned long urbs_end;
syncfunc_t fn = arg;
if (unw_unwind_to_user(info) < 0)
return;
pt = task_pt_regs(info->task);
urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
}
/*
* when a thread is stopped (ptraced), debugger might change thread's user
* stack (change memory directly), and we must avoid the RSE stored in kernel
* to override user stack (user space's RSE is newer than kernel's in the
* case). To workaround the issue, we copy kernel RSE to user RSE before the
* task is stopped, so user RSE has updated data. we then copy user RSE to
* kernel after the task is resummed from traced stop and kernel will use the
* newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
* synchronize user RSE to kernel.
*/
void ia64_ptrace_stop(void)
{
if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
return;
tsk_set_notify_resume(current);
unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
}
/*
* This is called to read back the register backing store.
*/
void ia64_sync_krbs(void)
{
clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
tsk_clear_notify_resume(current);
unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
}
/*
* After PTRACE_ATTACH, a thread's register backing store area in user
* space is assumed to contain correct data whenever the thread is
* stopped. arch_ptrace_stop takes care of this on tracing stops.
* But if the child was already stopped for job control when we attach
* to it, then it might not ever get into ptrace_stop by the time we
* want to examine the user memory containing the RBS.
*/
void
ptrace_attach_sync_user_rbs (struct task_struct *child)
{
int stopped = 0;
struct unw_frame_info info;
/*
* If the child is in TASK_STOPPED, we need to change that to
* TASK_TRACED momentarily while we operate on it. This ensures
* that the child won't be woken up and return to user mode while
* we are doing the sync. (It can only be woken up for SIGKILL.)
*/
read_lock(&tasklist_lock);
if (child->signal) {
spin_lock_irq(&child->sighand->siglock);
if (child->state == TASK_STOPPED &&
!test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
tsk_set_notify_resume(child);
child->state = TASK_TRACED;
stopped = 1;
}
spin_unlock_irq(&child->sighand->siglock);
}
read_unlock(&tasklist_lock);
if (!stopped)
return;
unw_init_from_blocked_task(&info, child);
do_sync_rbs(&info, ia64_sync_user_rbs);
/*
* Now move the child back into TASK_STOPPED if it should be in a
* job control stop, so that SIGCONT can be used to wake it up.
*/
read_lock(&tasklist_lock);
if (child->signal) {
spin_lock_irq(&child->sighand->siglock);
if (child->state == TASK_TRACED &&
(child->signal->flags & SIGNAL_STOP_STOPPED)) {
child->state = TASK_STOPPED;
}
spin_unlock_irq(&child->sighand->siglock);
}
read_unlock(&tasklist_lock);
}
static inline int
thread_matches (struct task_struct *thread, unsigned long addr)
{
unsigned long thread_rbs_end;
struct pt_regs *thread_regs;
if (ptrace_check_attach(thread, 0) < 0)
/*
* If the thread is not in an attachable state, we'll
* ignore it. The net effect is that if ADDR happens
* to overlap with the portion of the thread's
* register backing store that is currently residing
* on the thread's kernel stack, then ptrace() may end
* up accessing a stale value. But if the thread
* isn't stopped, that's a problem anyhow, so we're
* doing as well as we can...
*/
return 0;
thread_regs = task_pt_regs(thread);
thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
return 0;
return 1; /* looks like we've got a winner */
}
/*
* GDB apparently wants to be able to read the register-backing store
* of any thread when attached to a given process. If we are peeking
* or poking an address that happens to reside in the kernel-backing
* store of another thread, we need to attach to that thread, because
* otherwise we end up accessing stale data.
*
* task_list_lock must be read-locked before calling this routine!
*/
static struct task_struct *
find_thread_for_addr (struct task_struct *child, unsigned long addr)
{
struct task_struct *p;
struct mm_struct *mm;
struct list_head *this, *next;
int mm_users;
if (!(mm = get_task_mm(child)))
return child;
/* -1 because of our get_task_mm(): */
mm_users = atomic_read(&mm->mm_users) - 1;
if (mm_users <= 1)
goto out; /* not multi-threaded */
/*
* Traverse the current process' children list. Every task that
* one attaches to becomes a child. And it is only attached children
* of the debugger that are of interest (ptrace_check_attach checks
* for this).
*/
list_for_each_safe(this, next, ¤t->children) {
p = list_entry(this, struct task_struct, sibling);
if (p->tgid != child->tgid)
continue;
if (thread_matches(p, addr)) {
child = p;
goto out;
}
}
out:
mmput(mm);
return child;
}
/*
* Write f32-f127 back to task->thread.fph if it has been modified.
*/
inline void
ia64_flush_fph (struct task_struct *task)
{
struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
/*
* Prevent migrating this task while
* we're fiddling with the FPU state
*/
preempt_disable();
if (ia64_is_local_fpu_owner(task) && psr->mfh) {
psr->mfh = 0;
task->thread.flags |= IA64_THREAD_FPH_VALID;
ia64_save_fpu(&task->thread.fph[0]);
}
preempt_enable();
}
/*
* Sync the fph state of the task so that it can be manipulated
* through thread.fph. If necessary, f32-f127 are written back to
* thread.fph or, if the fph state hasn't been used before, thread.fph
* is cleared to zeroes. Also, access to f32-f127 is disabled to
* ensure that the task picks up the state from thread.fph when it
* executes again.
*/
void
ia64_sync_fph (struct task_struct *task)
{
struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
ia64_flush_fph(task);
if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
task->thread.flags |= IA64_THREAD_FPH_VALID;
memset(&task->thread.fph, 0, sizeof(task->thread.fph));
}
ia64_drop_fpu(task);
psr->dfh = 1;
}
static int
access_fr (struct unw_frame_info *info, int regnum, int hi,
unsigned long *data, int write_access)
{
struct ia64_fpreg fpval;
int ret;
ret = unw_get_fr(info, regnum, &fpval);
if (ret < 0)
return ret;
if (write_access) {
fpval.u.bits[hi] = *data;
ret = unw_set_fr(info, regnum, fpval);
} else
*data = fpval.u.bits[hi];
return ret;
}
/*
* Change the machine-state of CHILD such that it will return via the normal
* kernel exit-path, rather than the syscall-exit path.
*/
static void
convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
unsigned long cfm)
{
struct unw_frame_info info, prev_info;
unsigned long ip, sp, pr;
unw_init_from_blocked_task(&info, child);
while (1) {
prev_info = info;
if (unw_unwind(&info) < 0)
return;
unw_get_sp(&info, &sp);
if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
< IA64_PT_REGS_SIZE) {
dprintk("ptrace.%s: ran off the top of the kernel "
"stack\n", __FUNCTION__);
return;
}
if (unw_get_pr (&prev_info, &pr) < 0) {
unw_get_rp(&prev_info, &ip);
dprintk("ptrace.%s: failed to read "
"predicate register (ip=0x%lx)\n",
__FUNCTION__, ip);
return;
}
if (unw_is_intr_frame(&info)
&& (pr & (1UL << PRED_USER_STACK)))
break;
}
/*
* Note: at the time of this call, the target task is blocked
* in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
* (aka, "pLvSys") we redirect execution from
* .work_pending_syscall_end to .work_processed_kernel.
*/
unw_get_pr(&prev_info, &pr);
pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
pr |= (1UL << PRED_NON_SYSCALL);
unw_set_pr(&prev_info, pr);
pt->cr_ifs = (1UL << 63) | cfm;
/*
* Clear the memory that is NOT written on syscall-entry to
* ensure we do not leak kernel-state to user when execution
* resumes.
*/
pt->r2 = 0;
pt->r3 = 0;
pt->r14 = 0;
memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
pt->b7 = 0;
pt->ar_ccv = 0;
pt->ar_csd = 0;
pt->ar_ssd = 0;
}
static int
access_nat_bits (struct task_struct *child, struct pt_regs *pt,
struct unw_frame_info *info,
unsigned long *data, int write_access)
{
unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
char nat = 0;
if (write_access) {
nat_bits = *data;
scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
dprintk("ptrace: failed to set ar.unat\n");
return -1;
}
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(info, regnum, &dummy, &nat);
unw_set_gr(info, regnum, dummy,
(nat_bits >> regnum) & 1);
}
} else {
if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
dprintk("ptrace: failed to read ar.unat\n");
return -1;
}
nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(info, regnum, &dummy, &nat);
nat_bits |= (nat != 0) << regnum;
}
*data = nat_bits;
}
return 0;
}
static int
access_uarea (struct task_struct *child, unsigned long addr,
unsigned long *data, int write_access)
{
unsigned long *ptr, regnum, urbs_end, cfm;
struct switch_stack *sw;
struct pt_regs *pt;
# define pt_reg_addr(pt, reg) ((void *) \
((unsigned long) (pt) \
+ offsetof(struct pt_regs, reg)))
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
if ((addr & 0x7) != 0) {
dprintk("ptrace: unaligned register address 0x%lx\n", addr);
return -1;
}
if (addr < PT_F127 + 16) {
/* accessing fph */
if (write_access)
ia64_sync_fph(child);
else
ia64_flush_fph(child);
ptr = (unsigned long *)
((unsigned long) &child->thread.fph + addr);
} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
/* scratch registers untouched by kernel (saved in pt_regs) */
ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
} else if (addr >= PT_F12 && addr < PT_F15 + 16) {
/*
* Scratch registers untouched by kernel (saved in
* switch_stack).
*/
ptr = (unsigned long *) ((long) sw
+ (addr - PT_NAT_BITS - 32));
} else if (addr < PT_AR_LC + 8) {
/* preserved state: */
struct unw_frame_info info;
char nat = 0;
int ret;
unw_init_from_blocked_task(&info, child);
if (unw_unwind_to_user(&info) < 0)
return -1;
switch (addr) {
case PT_NAT_BITS:
return access_nat_bits(child, pt, &info,
data, write_access);
case PT_R4: case PT_R5: case PT_R6: case PT_R7:
if (write_access) {
/* read NaT bit first: */
unsigned long dummy;
ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
&dummy, &nat);
if (ret < 0)
return ret;
}
return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
&nat, write_access);
case PT_B1: case PT_B2: case PT_B3:
case PT_B4: case PT_B5:
return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
write_access);
case PT_AR_EC:
return unw_access_ar(&info, UNW_AR_EC, data,
write_access);
case PT_AR_LC:
return unw_access_ar(&info, UNW_AR_LC, data,
write_access);
default:
if (addr >= PT_F2 && addr < PT_F5 + 16)
return access_fr(&info, (addr - PT_F2)/16 + 2,
(addr & 8) != 0, data,
write_access);
else if (addr >= PT_F16 && addr < PT_F31 + 16)
return access_fr(&info,
(addr - PT_F16)/16 + 16,
(addr & 8) != 0,
data, write_access);
else {
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
}
} else if (addr < PT_F9+16) {
/* scratch state */
switch (addr) {
case PT_AR_BSP:
/*
* By convention, we use PT_AR_BSP to refer to
* the end of the user-level backing store.
* Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
* to get the real value of ar.bsp at the time
* the kernel was entered.
*
* Furthermore, when changing the contents of
* PT_AR_BSP (or PT_CFM) we MUST copy any
* users-level stacked registers that are
* stored on the kernel stack back to
* user-space because otherwise, we might end
* up clobbering kernel stacked registers.
* Also, if this happens while the task is
* blocked in a system call, which convert the
* state such that the non-system-call exit
* path is used. This ensures that the proper
* state will be picked up when resuming
* execution. However, it *also* means that
* once we write PT_AR_BSP/PT_CFM, it won't be
* possible to modify the syscall arguments of
* the pending system call any longer. This
* shouldn't be an issue because modifying
* PT_AR_BSP/PT_CFM generally implies that
* we're either abandoning the pending system
* call or that we defer it's re-execution
* (e.g., due to GDB doing an inferior
* function call).
*/
urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
if (write_access) {
if (*data != urbs_end) {
if (ia64_sync_user_rbs(child, sw,
pt->ar_bspstore,
urbs_end) < 0)
return -1;
if (in_syscall(pt))
convert_to_non_syscall(child,
pt,
cfm);
/*
* Simulate user-level write
* of ar.bsp:
*/
pt->loadrs = 0;
pt->ar_bspstore = *data;
}
} else
*data = urbs_end;
return 0;
case PT_CFM:
urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
if (write_access) {
if (((cfm ^ *data) & PFM_MASK) != 0) {
if (ia64_sync_user_rbs(child, sw,
pt->ar_bspstore,
urbs_end) < 0)
return -1;
if (in_syscall(pt))
convert_to_non_syscall(child,
pt,
cfm);
pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
| (*data & PFM_MASK));
}
} else
*data = cfm;
return 0;
case PT_CR_IPSR:
if (write_access) {
unsigned long tmp = *data;
/* psr.ri==3 is a reserved value: SDM 2:25 */
if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
tmp &= ~IA64_PSR_RI;
pt->cr_ipsr = ((tmp & IPSR_MASK)
| (pt->cr_ipsr & ~IPSR_MASK));
} else
*data = (pt->cr_ipsr & IPSR_MASK);
return 0;
case PT_AR_RSC:
if (write_access)
pt->ar_rsc = *data | (3 << 2); /* force PL3 */
else
*data = pt->ar_rsc;
return 0;
case PT_AR_RNAT:
ptr = pt_reg_addr(pt, ar_rnat);
break;
case PT_R1:
ptr = pt_reg_addr(pt, r1);
break;
case PT_R2: case PT_R3:
ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
break;
case PT_R8: case PT_R9: case PT_R10: case PT_R11:
ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
break;
case PT_R12: case PT_R13:
ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
break;
case PT_R14:
ptr = pt_reg_addr(pt, r14);
break;
case PT_R15:
ptr = pt_reg_addr(pt, r15);
break;
case PT_R16: case PT_R17: case PT_R18: case PT_R19:
case PT_R20: case PT_R21: case PT_R22: case PT_R23:
case PT_R24: case PT_R25: case PT_R26: case PT_R27:
case PT_R28: case PT_R29: case PT_R30: case PT_R31:
ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
break;
case PT_B0:
ptr = pt_reg_addr(pt, b0);
break;
case PT_B6:
ptr = pt_reg_addr(pt, b6);
break;
case PT_B7:
ptr = pt_reg_addr(pt, b7);
break;
case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
break;
case PT_AR_BSPSTORE:
ptr = pt_reg_addr(pt, ar_bspstore);
break;
case PT_AR_UNAT:
ptr = pt_reg_addr(pt, ar_unat);
break;
case PT_AR_PFS:
ptr = pt_reg_addr(pt, ar_pfs);
break;
case PT_AR_CCV:
ptr = pt_reg_addr(pt, ar_ccv);
break;
case PT_AR_FPSR:
ptr = pt_reg_addr(pt, ar_fpsr);
break;
case PT_CR_IIP:
ptr = pt_reg_addr(pt, cr_iip);
break;
case PT_PR:
ptr = pt_reg_addr(pt, pr);
break;
/* scratch register */
default:
/* disallow accessing anything else... */
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
} else if (addr <= PT_AR_SSD) {
ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
} else {
/* access debug registers */
if (addr >= PT_IBR) {
regnum = (addr - PT_IBR) >> 3;
ptr = &child->thread.ibr[0];
} else {
regnum = (addr - PT_DBR) >> 3;
ptr = &child->thread.dbr[0];
}
if (regnum >= 8) {
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
#ifdef CONFIG_PERFMON
/*
* Check if debug registers are used by perfmon. This
* test must be done once we know that we can do the
* operation, i.e. the arguments are all valid, but
* before we start modifying the state.
*
* Perfmon needs to keep a count of how many processes
* are trying to modify the debug registers for system
* wide monitoring sessions.
*
* We also include read access here, because they may
* cause the PMU-installed debug register state
* (dbr[], ibr[]) to be reset. The two arrays are also
* used by perfmon, but we do not use
* IA64_THREAD_DBG_VALID. The registers are restored
* by the PMU context switch code.
*/
if (pfm_use_debug_registers(child)) return -1;
#endif
if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
child->thread.flags |= IA64_THREAD_DBG_VALID;
memset(child->thread.dbr, 0,
sizeof(child->thread.dbr));
memset(child->thread.ibr, 0,
sizeof(child->thread.ibr));
}
ptr += regnum;
if ((regnum & 1) && write_access) {
/* don't let the user set kernel-level breakpoints: */
*ptr = *data & ~(7UL << 56);
return 0;
}
}
if (write_access)
*ptr = *data;
else
*data = *ptr;
return 0;
}
static long
ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
{
unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
struct unw_frame_info info;
struct ia64_fpreg fpval;
struct switch_stack *sw;
struct pt_regs *pt;
long ret, retval = 0;
char nat = 0;
int i;
if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
return -EIO;
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
unw_init_from_blocked_task(&info, child);
if (unw_unwind_to_user(&info) < 0) {
return -EIO;
}
if (((unsigned long) ppr & 0x7) != 0) {
dprintk("ptrace:unaligned register address %p\n", ppr);
return -EIO;
}
if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
|| access_uarea(child, PT_AR_EC, &ec, 0) < 0
|| access_uarea(child, PT_AR_LC, &lc, 0) < 0
|| access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
|| access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
|| access_uarea(child, PT_CFM, &cfm, 0)
|| access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
return -EIO;
/* control regs */
retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
retval |= __put_user(psr, &ppr->cr_ipsr);
/* app regs */
retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
retval |= __put_user(cfm, &ppr->cfm);
/* gr1-gr3 */
retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
/* gr4-gr7 */
for (i = 4; i < 8; i++) {
if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
return -EIO;
retval |= __put_user(val, &ppr->gr[i]);
}
/* gr8-gr11 */
retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
/* gr12-gr15 */
retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
/* gr16-gr31 */
retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
/* b0 */
retval |= __put_user(pt->b0, &ppr->br[0]);
/* b1-b5 */
for (i = 1; i < 6; i++) {
if (unw_access_br(&info, i, &val, 0) < 0)
return -EIO;
__put_user(val, &ppr->br[i]);
}
/* b6-b7 */
retval |= __put_user(pt->b6, &ppr->br[6]);
retval |= __put_user(pt->b7, &ppr->br[7]);
/* fr2-fr5 */
for (i = 2; i < 6; i++) {
if (unw_get_fr(&info, i, &fpval) < 0)
return -EIO;
retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
}
/* fr6-fr11 */
retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
sizeof(struct ia64_fpreg) * 6);
/* fp scratch regs(12-15) */
retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
sizeof(struct ia64_fpreg) * 4);
/* fr16-fr31 */
for (i = 16; i < 32; i++) {
if (unw_get_fr(&info, i, &fpval) < 0)
return -EIO;
retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
}
/* fph */
ia64_flush_fph(child);
retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
sizeof(ppr->fr[32]) * 96);
/* preds */
retval |= __put_user(pt->pr, &ppr->pr);
/* nat bits */
retval |= __put_user(nat_bits, &ppr->nat);
ret = retval ? -EIO : 0;
return ret;
}
static long
ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
{
unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
struct unw_frame_info info;
struct switch_stack *sw;
struct ia64_fpreg fpval;
struct pt_regs *pt;
long ret, retval = 0;
int i;
memset(&fpval, 0, sizeof(fpval));
if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
return -EIO;
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
unw_init_from_blocked_task(&info, child);
if (unw_unwind_to_user(&info) < 0) {
return -EIO;
}
if (((unsigned long) ppr & 0x7) != 0) {
dprintk("ptrace:unaligned register address %p\n", ppr);
return -EIO;
}
/* control regs */
retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
retval |= __get_user(psr, &ppr->cr_ipsr);
/* app regs */
retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
retval |= __get_user(cfm, &ppr->cfm);
/* gr1-gr3 */
retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
/* gr4-gr7 */
for (i = 4; i < 8; i++) {
retval |= __get_user(val, &ppr->gr[i]);
/* NaT bit will be set via PT_NAT_BITS: */
if (unw_set_gr(&info, i, val, 0) < 0)
return -EIO;
}
/* gr8-gr11 */
retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
/* gr12-gr15 */
retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
/* gr16-gr31 */
retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
/* b0 */
retval |= __get_user(pt->b0, &ppr->br[0]);
/* b1-b5 */
for (i = 1; i < 6; i++) {
retval |= __get_user(val, &ppr->br[i]);
unw_set_br(&info, i, val);
}
/* b6-b7 */
retval |= __get_user(pt->b6, &ppr->br[6]);
retval |= __get_user(pt->b7, &ppr->br[7]);
/* fr2-fr5 */
for (i = 2; i < 6; i++) {
retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
if (unw_set_fr(&info, i, fpval) < 0)
return -EIO;
}
/* fr6-fr11 */
retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
sizeof(ppr->fr[6]) * 6);
/* fp scratch regs(12-15) */
retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
sizeof(ppr->fr[12]) * 4);
/* fr16-fr31 */
for (i = 16; i < 32; i++) {
retval |= __copy_from_user(&fpval, &ppr->fr[i],
sizeof(fpval));
if (unw_set_fr(&info, i, fpval) < 0)
return -EIO;
}
/* fph */
ia64_sync_fph(child);
retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
sizeof(ppr->fr[32]) * 96);
/* preds */
retval |= __get_user(pt->pr, &ppr->pr);
/* nat bits */
retval |= __get_user(nat_bits, &ppr->nat);
retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
retval |= access_uarea(child, PT_AR_EC, &ec, 1);
retval |= access_uarea(child, PT_AR_LC, &lc, 1);
retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
retval |= access_uarea(child, PT_CFM, &cfm, 1);
retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
ret = retval ? -EIO : 0;
return ret;
}
/*
* Called by kernel/ptrace.c when detaching..
*
* Make sure the single step bit is not set.
*/
void
ptrace_disable (struct task_struct *child)
{
struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
/* make sure the single step/taken-branch trap bits are not set: */
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
child_psr->ss = 0;
child_psr->tb = 0;
}
asmlinkage long
sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
{
struct pt_regs *pt;
unsigned long peek_or_poke;
struct task_struct *child;
struct switch_stack *sw;
long ret;
lock_kernel();
ret = -EPERM;
if (request == PTRACE_TRACEME) {
ret = ptrace_traceme();
goto out;
}
peek_or_poke = (request == PTRACE_PEEKTEXT
|| request == PTRACE_PEEKDATA
|| request == PTRACE_POKETEXT
|| request == PTRACE_POKEDATA);
ret = -ESRCH;
read_lock(&tasklist_lock);
{
child = find_task_by_pid(pid);
if (child) {
if (peek_or_poke)
child = find_thread_for_addr(child, addr);
get_task_struct(child);
}
}
read_unlock(&tasklist_lock);
if (!child)
goto out;
ret = -EPERM;
if (pid == 1) /* no messing around with init! */
goto out_tsk;
if (request == PTRACE_ATTACH) {
ret = ptrace_attach(child);
if (!ret)
arch_ptrace_attach(child);
goto out_tsk;
}
ret = ptrace_check_attach(child, request == PTRACE_KILL);
if (ret < 0)
goto out_tsk;
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
switch (request) {
case PTRACE_PEEKTEXT:
case PTRACE_PEEKDATA:
/* read word at location addr */
if (access_process_vm(child, addr, &data, sizeof(data), 0)
!= sizeof(data)) {
ret = -EIO;
goto out_tsk;
}
ret = data;
/* ensure "ret" is not mistaken as an error code */
force_successful_syscall_return();
goto out_tsk;
/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
* by the generic ptrace_request().
*/
case PTRACE_PEEKUSR:
/* read the word at addr in the USER area */
if (access_uarea(child, addr, &data, 0) < 0) {
ret = -EIO;
goto out_tsk;
}
ret = data;
/* ensure "ret" is not mistaken as an error code */
force_successful_syscall_return();
goto out_tsk;
case PTRACE_POKEUSR:
/* write the word at addr in the USER area */
if (access_uarea(child, addr, &data, 1) < 0) {
ret = -EIO;
goto out_tsk;
}
ret = 0;
goto out_tsk;
case PTRACE_OLD_GETSIGINFO:
/* for backwards-compatibility */
ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
goto out_tsk;
case PTRACE_OLD_SETSIGINFO:
/* for backwards-compatibility */
ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
goto out_tsk;
case PTRACE_SYSCALL:
/* continue and stop at next (return from) syscall */
case PTRACE_CONT:
/* restart after signal. */
ret = -EIO;
if (!valid_signal(data))
goto out_tsk;
if (request == PTRACE_SYSCALL)
set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
else
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
child->exit_code = data;
/*
* Make sure the single step/taken-branch trap bits
* are not set:
*/
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
ia64_psr(pt)->ss = 0;
ia64_psr(pt)->tb = 0;
wake_up_process(child);
ret = 0;
goto out_tsk;
case PTRACE_KILL:
/*
* Make the child exit. Best I can do is send it a
* sigkill. Perhaps it should be put in the status
* that it wants to exit.
*/
if (child->exit_state == EXIT_ZOMBIE)
/* already dead */
goto out_tsk;
child->exit_code = SIGKILL;
ptrace_disable(child);
wake_up_process(child);
ret = 0;
goto out_tsk;
case PTRACE_SINGLESTEP:
/* let child execute for one instruction */
case PTRACE_SINGLEBLOCK:
ret = -EIO;
if (!valid_signal(data))
goto out_tsk;
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
set_tsk_thread_flag(child, TIF_SINGLESTEP);
if (request == PTRACE_SINGLESTEP) {
ia64_psr(pt)->ss = 1;
} else {
ia64_psr(pt)->tb = 1;
}
child->exit_code = data;
/* give it a chance to run. */
wake_up_process(child);
ret = 0;
goto out_tsk;
case PTRACE_DETACH:
/* detach a process that was attached. */
ret = ptrace_detach(child, data);
goto out_tsk;
case PTRACE_GETREGS:
ret = ptrace_getregs(child,
(struct pt_all_user_regs __user *) data);
goto out_tsk;
case PTRACE_SETREGS:
ret = ptrace_setregs(child,
(struct pt_all_user_regs __user *) data);
goto out_tsk;
default:
ret = ptrace_request(child, request, addr, data);
goto out_tsk;
}
out_tsk:
put_task_struct(child);
out:
unlock_kernel();
return ret;
}
static void
syscall_trace (void)
{
/*
* The 0x80 provides a way for the tracing parent to
* distinguish between a syscall stop and SIGTRAP delivery.
*/
ptrace_notify(SIGTRAP
| ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
/*
* This isn't the same as continuing with a signal, but it
* will do for normal use. strace only continues with a
* signal if the stopping signal is not SIGTRAP. -brl
*/
if (current->exit_code) {
send_sig(current->exit_code, current, 1);
current->exit_code = 0;
}
}
/* "asmlinkage" so the input arguments are preserved... */
asmlinkage void
syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
long arg4, long arg5, long arg6, long arg7,
struct pt_regs regs)
{
if (test_thread_flag(TIF_SYSCALL_TRACE)
&& (current->ptrace & PT_PTRACED))
syscall_trace();
/* copy user rbs to kernel rbs */
if (test_thread_flag(TIF_RESTORE_RSE))
ia64_sync_krbs();
if (unlikely(current->audit_context)) {
long syscall;
int arch;
if (IS_IA32_PROCESS(®s)) {
syscall = regs.r1;
arch = AUDIT_ARCH_I386;
} else {
syscall = regs.r15;
arch = AUDIT_ARCH_IA64;
}
audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
}
}
/* "asmlinkage" so the input arguments are preserved... */
asmlinkage void
syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
long arg4, long arg5, long arg6, long arg7,
struct pt_regs regs)
{
if (unlikely(current->audit_context)) {
int success = AUDITSC_RESULT(regs.r10);
long result = regs.r8;
if (success != AUDITSC_SUCCESS)
result = -result;
audit_syscall_exit(success, result);
}
if ((test_thread_flag(TIF_SYSCALL_TRACE)
|| test_thread_flag(TIF_SINGLESTEP))
&& (current->ptrace & PT_PTRACED))
syscall_trace();
/* copy user rbs to kernel rbs */
if (test_thread_flag(TIF_RESTORE_RSE))
ia64_sync_krbs();
}
|