aboutsummaryrefslogtreecommitdiff
path: root/arch/ia64/mm/contig.c
blob: 54bf540598118339a04919e1f08c505a5ad57cd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *	Stephane Eranian <eranian@hpl.hp.com>
 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
 *
 * Routines used by ia64 machines with contiguous (or virtually contiguous)
 * memory.
 */
#include <linux/bootmem.h>
#include <linux/efi.h>
#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/swap.h>

#include <asm/meminit.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/mca.h>

#ifdef CONFIG_VIRTUAL_MEM_MAP
static unsigned long max_gap;
#endif

/**
 * show_mem - give short summary of memory stats
 *
 * Shows a simple page count of reserved and used pages in the system.
 * For discontig machines, it does this on a per-pgdat basis.
 */
void show_mem(void)
{
	int i, total_reserved = 0;
	int total_shared = 0, total_cached = 0;
	unsigned long total_present = 0;
	pg_data_t *pgdat;

	printk(KERN_INFO "Mem-info:\n");
	show_free_areas();
	printk(KERN_INFO "Node memory in pages:\n");
	for_each_online_pgdat(pgdat) {
		unsigned long present;
		unsigned long flags;
		int shared = 0, cached = 0, reserved = 0;

		pgdat_resize_lock(pgdat, &flags);
		present = pgdat->node_present_pages;
		for(i = 0; i < pgdat->node_spanned_pages; i++) {
			struct page *page;
			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
				touch_nmi_watchdog();
			if (pfn_valid(pgdat->node_start_pfn + i))
				page = pfn_to_page(pgdat->node_start_pfn + i);
			else {
#ifdef CONFIG_VIRTUAL_MEM_MAP
				if (max_gap < LARGE_GAP)
					continue;
#endif
				i = vmemmap_find_next_valid_pfn(pgdat->node_id,
					 i) - 1;
				continue;
			}
			if (PageReserved(page))
				reserved++;
			else if (PageSwapCache(page))
				cached++;
			else if (page_count(page))
				shared += page_count(page)-1;
		}
		pgdat_resize_unlock(pgdat, &flags);
		total_present += present;
		total_reserved += reserved;
		total_cached += cached;
		total_shared += shared;
		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
		       "shrd: %10d, swpd: %10d\n", pgdat->node_id,
		       present, reserved, shared, cached);
	}
	printk(KERN_INFO "%ld pages of RAM\n", total_present);
	printk(KERN_INFO "%d reserved pages\n", total_reserved);
	printk(KERN_INFO "%d pages shared\n", total_shared);
	printk(KERN_INFO "%d pages swap cached\n", total_cached);
	printk(KERN_INFO "Total of %ld pages in page table cache\n",
	       quicklist_total_size());
	printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
}


/* physical address where the bootmem map is located */
unsigned long bootmap_start;

/**
 * find_bootmap_location - callback to find a memory area for the bootmap
 * @start: start of region
 * @end: end of region
 * @arg: unused callback data
 *
 * Find a place to put the bootmap and return its starting address in
 * bootmap_start.  This address must be page-aligned.
 */
static int __init
find_bootmap_location (u64 start, u64 end, void *arg)
{
	u64 needed = *(unsigned long *)arg;
	u64 range_start, range_end, free_start;
	int i;

#if IGNORE_PFN0
	if (start == PAGE_OFFSET) {
		start += PAGE_SIZE;
		if (start >= end)
			return 0;
	}
#endif

	free_start = PAGE_OFFSET;

	for (i = 0; i < num_rsvd_regions; i++) {
		range_start = max(start, free_start);
		range_end   = min(end, rsvd_region[i].start & PAGE_MASK);

		free_start = PAGE_ALIGN(rsvd_region[i].end);

		if (range_end <= range_start)
			continue; /* skip over empty range */

		if (range_end - range_start >= needed) {
			bootmap_start = __pa(range_start);
			return -1;	/* done */
		}

		/* nothing more available in this segment */
		if (range_end == end)
			return 0;
	}
	return 0;
}

#ifdef CONFIG_SMP
static void *cpu_data;
/**
 * per_cpu_init - setup per-cpu variables
 *
 * Allocate and setup per-cpu data areas.
 */
void * __cpuinit
per_cpu_init (void)
{
	static bool first_time = true;
	void *cpu0_data = __cpu0_per_cpu;
	unsigned int cpu;

	if (!first_time)
		goto skip;
	first_time = false;

	/*
	 * get_free_pages() cannot be used before cpu_init() done.
	 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
	 * to avoid that AP calls get_zeroed_page().
	 */
	for_each_possible_cpu(cpu) {
		void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;

		memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
		__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
		per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];

		/*
		 * percpu area for cpu0 is moved from the __init area
		 * which is setup by head.S and used till this point.
		 * Update ar.k3.  This move is ensures that percpu
		 * area for cpu0 is on the correct node and its
		 * virtual address isn't insanely far from other
		 * percpu areas which is important for congruent
		 * percpu allocator.
		 */
		if (cpu == 0)
			ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
				    (unsigned long)__per_cpu_start);

		cpu_data += PERCPU_PAGE_SIZE;
	}
skip:
	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
}

static inline void
alloc_per_cpu_data(void)
{
	cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
				   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
}

/**
 * setup_per_cpu_areas - setup percpu areas
 *
 * Arch code has already allocated and initialized percpu areas.  All
 * this function has to do is to teach the determined layout to the
 * dynamic percpu allocator, which happens to be more complex than
 * creating whole new ones using helpers.
 */
void __init
setup_per_cpu_areas(void)
{
	struct pcpu_alloc_info *ai;
	struct pcpu_group_info *gi;
	unsigned int cpu;
	ssize_t static_size, reserved_size, dyn_size;
	int rc;

	ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
	if (!ai)
		panic("failed to allocate pcpu_alloc_info");
	gi = &ai->groups[0];

	/* units are assigned consecutively to possible cpus */
	for_each_possible_cpu(cpu)
		gi->cpu_map[gi->nr_units++] = cpu;

	/* set parameters */
	static_size = __per_cpu_end - __per_cpu_start;
	reserved_size = PERCPU_MODULE_RESERVE;
	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
	if (dyn_size < 0)
		panic("percpu area overflow static=%zd reserved=%zd\n",
		      static_size, reserved_size);

	ai->static_size		= static_size;
	ai->reserved_size	= reserved_size;
	ai->dyn_size		= dyn_size;
	ai->unit_size		= PERCPU_PAGE_SIZE;
	ai->atom_size		= PAGE_SIZE;
	ai->alloc_size		= PERCPU_PAGE_SIZE;

	rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
	if (rc)
		panic("failed to setup percpu area (err=%d)", rc);

	pcpu_free_alloc_info(ai);
}
#else
#define alloc_per_cpu_data() do { } while (0)
#endif /* CONFIG_SMP */

/**
 * find_memory - setup memory map
 *
 * Walk the EFI memory map and find usable memory for the system, taking
 * into account reserved areas.
 */
void __init
find_memory (void)
{
	unsigned long bootmap_size;

	reserve_memory();

	/* first find highest page frame number */
	min_low_pfn = ~0UL;
	max_low_pfn = 0;
	efi_memmap_walk(find_max_min_low_pfn, NULL);
	max_pfn = max_low_pfn;
	/* how many bytes to cover all the pages */
	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;

	/* look for a location to hold the bootmap */
	bootmap_start = ~0UL;
	efi_memmap_walk(find_bootmap_location, &bootmap_size);
	if (bootmap_start == ~0UL)
		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);

	bootmap_size = init_bootmem_node(NODE_DATA(0),
			(bootmap_start >> PAGE_SHIFT), 0, max_pfn);

	/* Free all available memory, then mark bootmem-map as being in use. */
	efi_memmap_walk(filter_rsvd_memory, free_bootmem);
	reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);

	find_initrd();

	alloc_per_cpu_data();
}

static int count_pages(u64 start, u64 end, void *arg)
{
	unsigned long *count = arg;

	*count += (end - start) >> PAGE_SHIFT;
	return 0;
}

/*
 * Set up the page tables.
 */

void __init
paging_init (void)
{
	unsigned long max_dma;
	unsigned long max_zone_pfns[MAX_NR_ZONES];

	num_physpages = 0;
	efi_memmap_walk(count_pages, &num_physpages);

	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
#ifdef CONFIG_ZONE_DMA
	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
	max_zone_pfns[ZONE_DMA] = max_dma;
#endif
	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;

#ifdef CONFIG_VIRTUAL_MEM_MAP
	efi_memmap_walk(filter_memory, register_active_ranges);
	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
	if (max_gap < LARGE_GAP) {
		vmem_map = (struct page *) 0;
		free_area_init_nodes(max_zone_pfns);
	} else {
		unsigned long map_size;

		/* allocate virtual_mem_map */

		map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
			sizeof(struct page));
		VMALLOC_END -= map_size;
		vmem_map = (struct page *) VMALLOC_END;
		efi_memmap_walk(create_mem_map_page_table, NULL);

		/*
		 * alloc_node_mem_map makes an adjustment for mem_map
		 * which isn't compatible with vmem_map.
		 */
		NODE_DATA(0)->node_mem_map = vmem_map +
			find_min_pfn_with_active_regions();
		free_area_init_nodes(max_zone_pfns);

		printk("Virtual mem_map starts at 0x%p\n", mem_map);
	}
#else /* !CONFIG_VIRTUAL_MEM_MAP */
	add_active_range(0, 0, max_low_pfn);
	free_area_init_nodes(max_zone_pfns);
#endif /* !CONFIG_VIRTUAL_MEM_MAP */
	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
}