1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
|
/*
* Routines to indentify caches on Intel CPU.
*
* Changes:
* Venkatesh Pallipadi : Adding cache identification through cpuid(4)
* Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
* Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <asm/processor.h>
#include <asm/smp.h>
#define LVL_1_INST 1
#define LVL_1_DATA 2
#define LVL_2 3
#define LVL_3 4
#define LVL_TRACE 5
struct _cache_table
{
unsigned char descriptor;
char cache_type;
short size;
};
/* all the cache descriptor types we care about (no TLB or trace cache entries) */
static struct _cache_table cache_table[] __cpuinitdata =
{
{ 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
{ 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
{ 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
{ 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
{ 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
{ 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
{ 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
{ 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
{ 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
{ 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
{ 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
{ 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
{ 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
{ 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
{ 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
{ 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
{ 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
{ 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
{ 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
{ 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
{ 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
{ 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
{ 0x4e, LVL_2, 6144 }, /* 24-way set assoc, 64 byte line size */
{ 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
{ 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
{ 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
{ 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
{ 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
{ 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
{ 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
{ 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
{ 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
{ 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
{ 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
{ 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
{ 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
{ 0x00, 0, 0}
};
enum _cache_type
{
CACHE_TYPE_NULL = 0,
CACHE_TYPE_DATA = 1,
CACHE_TYPE_INST = 2,
CACHE_TYPE_UNIFIED = 3
};
union _cpuid4_leaf_eax {
struct {
enum _cache_type type:5;
unsigned int level:3;
unsigned int is_self_initializing:1;
unsigned int is_fully_associative:1;
unsigned int reserved:4;
unsigned int num_threads_sharing:12;
unsigned int num_cores_on_die:6;
} split;
u32 full;
};
union _cpuid4_leaf_ebx {
struct {
unsigned int coherency_line_size:12;
unsigned int physical_line_partition:10;
unsigned int ways_of_associativity:10;
} split;
u32 full;
};
union _cpuid4_leaf_ecx {
struct {
unsigned int number_of_sets:32;
} split;
u32 full;
};
struct _cpuid4_info {
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned long size;
unsigned long can_disable;
DECLARE_BITMAP(shared_cpu_map, NR_CPUS);
};
/* subset of above _cpuid4_info w/o shared_cpu_map */
struct _cpuid4_info_regs {
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned long size;
unsigned long can_disable;
};
#if defined(CONFIG_PCI) && defined(CONFIG_SYSFS)
static struct pci_device_id k8_nb_id[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x1103) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x1203) },
{}
};
#endif
unsigned short num_cache_leaves;
/* AMD doesn't have CPUID4. Emulate it here to report the same
information to the user. This makes some assumptions about the machine:
L2 not shared, no SMT etc. that is currently true on AMD CPUs.
In theory the TLBs could be reported as fake type (they are in "dummy").
Maybe later */
union l1_cache {
struct {
unsigned line_size : 8;
unsigned lines_per_tag : 8;
unsigned assoc : 8;
unsigned size_in_kb : 8;
};
unsigned val;
};
union l2_cache {
struct {
unsigned line_size : 8;
unsigned lines_per_tag : 4;
unsigned assoc : 4;
unsigned size_in_kb : 16;
};
unsigned val;
};
union l3_cache {
struct {
unsigned line_size : 8;
unsigned lines_per_tag : 4;
unsigned assoc : 4;
unsigned res : 2;
unsigned size_encoded : 14;
};
unsigned val;
};
static unsigned short assocs[] __cpuinitdata = {
[1] = 1, [2] = 2, [4] = 4, [6] = 8,
[8] = 16, [0xa] = 32, [0xb] = 48,
[0xc] = 64,
[0xf] = 0xffff // ??
};
static unsigned char levels[] __cpuinitdata = { 1, 1, 2, 3 };
static unsigned char types[] __cpuinitdata = { 1, 2, 3, 3 };
static void __cpuinit
amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
union _cpuid4_leaf_ebx *ebx,
union _cpuid4_leaf_ecx *ecx)
{
unsigned dummy;
unsigned line_size, lines_per_tag, assoc, size_in_kb;
union l1_cache l1i, l1d;
union l2_cache l2;
union l3_cache l3;
union l1_cache *l1 = &l1d;
eax->full = 0;
ebx->full = 0;
ecx->full = 0;
cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
switch (leaf) {
case 1:
l1 = &l1i;
case 0:
if (!l1->val)
return;
assoc = l1->assoc;
line_size = l1->line_size;
lines_per_tag = l1->lines_per_tag;
size_in_kb = l1->size_in_kb;
break;
case 2:
if (!l2.val)
return;
assoc = l2.assoc;
line_size = l2.line_size;
lines_per_tag = l2.lines_per_tag;
/* cpu_data has errata corrections for K7 applied */
size_in_kb = current_cpu_data.x86_cache_size;
break;
case 3:
if (!l3.val)
return;
assoc = l3.assoc;
line_size = l3.line_size;
lines_per_tag = l3.lines_per_tag;
size_in_kb = l3.size_encoded * 512;
break;
default:
return;
}
eax->split.is_self_initializing = 1;
eax->split.type = types[leaf];
eax->split.level = levels[leaf];
if (leaf == 3)
eax->split.num_threads_sharing = current_cpu_data.x86_max_cores - 1;
else
eax->split.num_threads_sharing = 0;
eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
if (assoc == 0xf)
eax->split.is_fully_associative = 1;
ebx->split.coherency_line_size = line_size - 1;
ebx->split.ways_of_associativity = assocs[assoc] - 1;
ebx->split.physical_line_partition = lines_per_tag - 1;
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
(ebx->split.ways_of_associativity + 1) - 1;
}
static void __cpuinit
amd_check_l3_disable(int index, struct _cpuid4_info_regs *this_leaf)
{
if (index < 3)
return;
this_leaf->can_disable = 1;
}
static int
__cpuinit cpuid4_cache_lookup_regs(int index,
struct _cpuid4_info_regs *this_leaf)
{
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned edx;
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
amd_cpuid4(index, &eax, &ebx, &ecx);
if (boot_cpu_data.x86 >= 0x10)
amd_check_l3_disable(index, this_leaf);
} else {
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
}
if (eax.split.type == CACHE_TYPE_NULL)
return -EIO; /* better error ? */
this_leaf->eax = eax;
this_leaf->ebx = ebx;
this_leaf->ecx = ecx;
this_leaf->size = (ecx.split.number_of_sets + 1) *
(ebx.split.coherency_line_size + 1) *
(ebx.split.physical_line_partition + 1) *
(ebx.split.ways_of_associativity + 1);
return 0;
}
static int __cpuinit find_num_cache_leaves(void)
{
unsigned int eax, ebx, ecx, edx;
union _cpuid4_leaf_eax cache_eax;
int i = -1;
do {
++i;
/* Do cpuid(4) loop to find out num_cache_leaves */
cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax;
} while (cache_eax.split.type != CACHE_TYPE_NULL);
return i;
}
unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
#ifdef CONFIG_X86_HT
unsigned int cpu = c->cpu_index;
#endif
if (c->cpuid_level > 3) {
static int is_initialized;
if (is_initialized == 0) {
/* Init num_cache_leaves from boot CPU */
num_cache_leaves = find_num_cache_leaves();
is_initialized++;
}
/*
* Whenever possible use cpuid(4), deterministic cache
* parameters cpuid leaf to find the cache details
*/
for (i = 0; i < num_cache_leaves; i++) {
struct _cpuid4_info_regs this_leaf;
int retval;
retval = cpuid4_cache_lookup_regs(i, &this_leaf);
if (retval >= 0) {
switch(this_leaf.eax.split.level) {
case 1:
if (this_leaf.eax.split.type ==
CACHE_TYPE_DATA)
new_l1d = this_leaf.size/1024;
else if (this_leaf.eax.split.type ==
CACHE_TYPE_INST)
new_l1i = this_leaf.size/1024;
break;
case 2:
new_l2 = this_leaf.size/1024;
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
l2_id = c->apicid >> index_msb;
break;
case 3:
new_l3 = this_leaf.size/1024;
num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
l3_id = c->apicid >> index_msb;
break;
default:
break;
}
}
}
}
/*
* Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
* trace cache
*/
if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
/* supports eax=2 call */
int j, n;
unsigned int regs[4];
unsigned char *dp = (unsigned char *)regs;
int only_trace = 0;
if (num_cache_leaves != 0 && c->x86 == 15)
only_trace = 1;
/* Number of times to iterate */
n = cpuid_eax(2) & 0xFF;
for ( i = 0 ; i < n ; i++ ) {
cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
/* If bit 31 is set, this is an unknown format */
for ( j = 0 ; j < 3 ; j++ ) {
if (regs[j] & (1 << 31)) regs[j] = 0;
}
/* Byte 0 is level count, not a descriptor */
for ( j = 1 ; j < 16 ; j++ ) {
unsigned char des = dp[j];
unsigned char k = 0;
/* look up this descriptor in the table */
while (cache_table[k].descriptor != 0)
{
if (cache_table[k].descriptor == des) {
if (only_trace && cache_table[k].cache_type != LVL_TRACE)
break;
switch (cache_table[k].cache_type) {
case LVL_1_INST:
l1i += cache_table[k].size;
break;
case LVL_1_DATA:
l1d += cache_table[k].size;
break;
case LVL_2:
l2 += cache_table[k].size;
break;
case LVL_3:
l3 += cache_table[k].size;
break;
case LVL_TRACE:
trace += cache_table[k].size;
break;
}
break;
}
k++;
}
}
}
}
if (new_l1d)
l1d = new_l1d;
if (new_l1i)
l1i = new_l1i;
if (new_l2) {
l2 = new_l2;
#ifdef CONFIG_X86_HT
per_cpu(cpu_llc_id, cpu) = l2_id;
#endif
}
if (new_l3) {
l3 = new_l3;
#ifdef CONFIG_X86_HT
per_cpu(cpu_llc_id, cpu) = l3_id;
#endif
}
if (trace)
printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
else if ( l1i )
printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
if (l1d)
printk(", L1 D cache: %dK\n", l1d);
else
printk("\n");
if (l2)
printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
if (l3)
printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
return l2;
}
#ifdef CONFIG_SYSFS
/* pointer to _cpuid4_info array (for each cache leaf) */
static DEFINE_PER_CPU(struct _cpuid4_info *, cpuid4_info);
#define CPUID4_INFO_IDX(x, y) (&((per_cpu(cpuid4_info, x))[y]))
#ifdef CONFIG_SMP
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
{
struct _cpuid4_info *this_leaf, *sibling_leaf;
unsigned long num_threads_sharing;
int index_msb, i;
struct cpuinfo_x86 *c = &cpu_data(cpu);
this_leaf = CPUID4_INFO_IDX(cpu, index);
num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
if (num_threads_sharing == 1)
cpumask_set_cpu(cpu, to_cpumask(this_leaf->shared_cpu_map));
else {
index_msb = get_count_order(num_threads_sharing);
for_each_online_cpu(i) {
if (cpu_data(i).apicid >> index_msb ==
c->apicid >> index_msb) {
cpumask_set_cpu(i,
to_cpumask(this_leaf->shared_cpu_map));
if (i != cpu && per_cpu(cpuid4_info, i)) {
sibling_leaf =
CPUID4_INFO_IDX(i, index);
cpumask_set_cpu(cpu, to_cpumask(
sibling_leaf->shared_cpu_map));
}
}
}
}
}
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
{
struct _cpuid4_info *this_leaf, *sibling_leaf;
int sibling;
this_leaf = CPUID4_INFO_IDX(cpu, index);
for_each_cpu(sibling, to_cpumask(this_leaf->shared_cpu_map)) {
sibling_leaf = CPUID4_INFO_IDX(sibling, index);
cpumask_clear_cpu(cpu,
to_cpumask(sibling_leaf->shared_cpu_map));
}
}
#else
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
#endif
static void __cpuinit free_cache_attributes(unsigned int cpu)
{
int i;
for (i = 0; i < num_cache_leaves; i++)
cache_remove_shared_cpu_map(cpu, i);
kfree(per_cpu(cpuid4_info, cpu));
per_cpu(cpuid4_info, cpu) = NULL;
}
static int
__cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
{
struct _cpuid4_info_regs *leaf_regs =
(struct _cpuid4_info_regs *)this_leaf;
return cpuid4_cache_lookup_regs(index, leaf_regs);
}
static void __cpuinit get_cpu_leaves(void *_retval)
{
int j, *retval = _retval, cpu = smp_processor_id();
/* Do cpuid and store the results */
for (j = 0; j < num_cache_leaves; j++) {
struct _cpuid4_info *this_leaf;
this_leaf = CPUID4_INFO_IDX(cpu, j);
*retval = cpuid4_cache_lookup(j, this_leaf);
if (unlikely(*retval < 0)) {
int i;
for (i = 0; i < j; i++)
cache_remove_shared_cpu_map(cpu, i);
break;
}
cache_shared_cpu_map_setup(cpu, j);
}
}
static int __cpuinit detect_cache_attributes(unsigned int cpu)
{
int retval;
if (num_cache_leaves == 0)
return -ENOENT;
per_cpu(cpuid4_info, cpu) = kzalloc(
sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
if (per_cpu(cpuid4_info, cpu) == NULL)
return -ENOMEM;
smp_call_function_single(cpu, get_cpu_leaves, &retval, true);
if (retval) {
kfree(per_cpu(cpuid4_info, cpu));
per_cpu(cpuid4_info, cpu) = NULL;
}
return retval;
}
#include <linux/kobject.h>
#include <linux/sysfs.h>
extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
/* pointer to kobject for cpuX/cache */
static DEFINE_PER_CPU(struct kobject *, cache_kobject);
struct _index_kobject {
struct kobject kobj;
unsigned int cpu;
unsigned short index;
};
/* pointer to array of kobjects for cpuX/cache/indexY */
static DEFINE_PER_CPU(struct _index_kobject *, index_kobject);
#define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(index_kobject, x))[y]))
#define show_one_plus(file_name, object, val) \
static ssize_t show_##file_name \
(struct _cpuid4_info *this_leaf, char *buf) \
{ \
return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
}
show_one_plus(level, eax.split.level, 0);
show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
{
return sprintf (buf, "%luK\n", this_leaf->size / 1024);
}
static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf,
int type, char *buf)
{
ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
int n = 0;
if (len > 1) {
const struct cpumask *mask;
mask = to_cpumask(this_leaf->shared_cpu_map);
n = type?
cpulist_scnprintf(buf, len-2, mask) :
cpumask_scnprintf(buf, len-2, mask);
buf[n++] = '\n';
buf[n] = '\0';
}
return n;
}
static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf)
{
return show_shared_cpu_map_func(leaf, 0, buf);
}
static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf)
{
return show_shared_cpu_map_func(leaf, 1, buf);
}
static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf)
{
switch (this_leaf->eax.split.type) {
case CACHE_TYPE_DATA:
return sprintf(buf, "Data\n");
case CACHE_TYPE_INST:
return sprintf(buf, "Instruction\n");
case CACHE_TYPE_UNIFIED:
return sprintf(buf, "Unified\n");
default:
return sprintf(buf, "Unknown\n");
}
}
#define to_object(k) container_of(k, struct _index_kobject, kobj)
#define to_attr(a) container_of(a, struct _cache_attr, attr)
#ifdef CONFIG_PCI
static struct pci_dev *get_k8_northbridge(int node)
{
struct pci_dev *dev = NULL;
int i;
for (i = 0; i <= node; i++) {
do {
dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev);
if (!dev)
break;
} while (!pci_match_id(&k8_nb_id[0], dev));
if (!dev)
break;
}
return dev;
}
#else
static struct pci_dev *get_k8_northbridge(int node)
{
return NULL;
}
#endif
static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf)
{
const struct cpumask *mask = to_cpumask(this_leaf->shared_cpu_map);
int node = cpu_to_node(cpumask_first(mask));
struct pci_dev *dev = NULL;
ssize_t ret = 0;
int i;
if (!this_leaf->can_disable)
return sprintf(buf, "Feature not enabled\n");
dev = get_k8_northbridge(node);
if (!dev) {
printk(KERN_ERR "Attempting AMD northbridge operation on a system with no northbridge\n");
return -EINVAL;
}
for (i = 0; i < 2; i++) {
unsigned int reg;
pci_read_config_dword(dev, 0x1BC + i * 4, ®);
ret += sprintf(buf, "%sEntry: %d\n", buf, i);
ret += sprintf(buf, "%sReads: %s\tNew Entries: %s\n",
buf,
reg & 0x80000000 ? "Disabled" : "Allowed",
reg & 0x40000000 ? "Disabled" : "Allowed");
ret += sprintf(buf, "%sSubCache: %x\tIndex: %x\n",
buf, (reg & 0x30000) >> 16, reg & 0xfff);
}
return ret;
}
static ssize_t
store_cache_disable(struct _cpuid4_info *this_leaf, const char *buf,
size_t count)
{
const struct cpumask *mask = to_cpumask(this_leaf->shared_cpu_map);
int node = cpu_to_node(cpumask_first(mask));
struct pci_dev *dev = NULL;
unsigned int ret, index, val;
if (!this_leaf->can_disable)
return 0;
if (strlen(buf) > 15)
return -EINVAL;
ret = sscanf(buf, "%x %x", &index, &val);
if (ret != 2)
return -EINVAL;
if (index > 1)
return -EINVAL;
val |= 0xc0000000;
dev = get_k8_northbridge(node);
if (!dev) {
printk(KERN_ERR "Attempting AMD northbridge operation on a system with no northbridge\n");
return -EINVAL;
}
pci_write_config_dword(dev, 0x1BC + index * 4, val & ~0x40000000);
wbinvd();
pci_write_config_dword(dev, 0x1BC + index * 4, val);
return 1;
}
struct _cache_attr {
struct attribute attr;
ssize_t (*show)(struct _cpuid4_info *, char *);
ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
};
#define define_one_ro(_name) \
static struct _cache_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)
define_one_ro(level);
define_one_ro(type);
define_one_ro(coherency_line_size);
define_one_ro(physical_line_partition);
define_one_ro(ways_of_associativity);
define_one_ro(number_of_sets);
define_one_ro(size);
define_one_ro(shared_cpu_map);
define_one_ro(shared_cpu_list);
static struct _cache_attr cache_disable = __ATTR(cache_disable, 0644, show_cache_disable, store_cache_disable);
static struct attribute * default_attrs[] = {
&type.attr,
&level.attr,
&coherency_line_size.attr,
&physical_line_partition.attr,
&ways_of_associativity.attr,
&number_of_sets.attr,
&size.attr,
&shared_cpu_map.attr,
&shared_cpu_list.attr,
&cache_disable.attr,
NULL
};
static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
{
struct _cache_attr *fattr = to_attr(attr);
struct _index_kobject *this_leaf = to_object(kobj);
ssize_t ret;
ret = fattr->show ?
fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
buf) :
0;
return ret;
}
static ssize_t store(struct kobject * kobj, struct attribute * attr,
const char * buf, size_t count)
{
struct _cache_attr *fattr = to_attr(attr);
struct _index_kobject *this_leaf = to_object(kobj);
ssize_t ret;
ret = fattr->store ?
fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
buf, count) :
0;
return ret;
}
static struct sysfs_ops sysfs_ops = {
.show = show,
.store = store,
};
static struct kobj_type ktype_cache = {
.sysfs_ops = &sysfs_ops,
.default_attrs = default_attrs,
};
static struct kobj_type ktype_percpu_entry = {
.sysfs_ops = &sysfs_ops,
};
static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
{
kfree(per_cpu(cache_kobject, cpu));
kfree(per_cpu(index_kobject, cpu));
per_cpu(cache_kobject, cpu) = NULL;
per_cpu(index_kobject, cpu) = NULL;
free_cache_attributes(cpu);
}
static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
{
int err;
if (num_cache_leaves == 0)
return -ENOENT;
err = detect_cache_attributes(cpu);
if (err)
return err;
/* Allocate all required memory */
per_cpu(cache_kobject, cpu) =
kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (unlikely(per_cpu(cache_kobject, cpu) == NULL))
goto err_out;
per_cpu(index_kobject, cpu) = kzalloc(
sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
if (unlikely(per_cpu(index_kobject, cpu) == NULL))
goto err_out;
return 0;
err_out:
cpuid4_cache_sysfs_exit(cpu);
return -ENOMEM;
}
static DECLARE_BITMAP(cache_dev_map, NR_CPUS);
/* Add/Remove cache interface for CPU device */
static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
{
unsigned int cpu = sys_dev->id;
unsigned long i, j;
struct _index_kobject *this_object;
int retval;
retval = cpuid4_cache_sysfs_init(cpu);
if (unlikely(retval < 0))
return retval;
retval = kobject_init_and_add(per_cpu(cache_kobject, cpu),
&ktype_percpu_entry,
&sys_dev->kobj, "%s", "cache");
if (retval < 0) {
cpuid4_cache_sysfs_exit(cpu);
return retval;
}
for (i = 0; i < num_cache_leaves; i++) {
this_object = INDEX_KOBJECT_PTR(cpu,i);
this_object->cpu = cpu;
this_object->index = i;
retval = kobject_init_and_add(&(this_object->kobj),
&ktype_cache,
per_cpu(cache_kobject, cpu),
"index%1lu", i);
if (unlikely(retval)) {
for (j = 0; j < i; j++) {
kobject_put(&(INDEX_KOBJECT_PTR(cpu,j)->kobj));
}
kobject_put(per_cpu(cache_kobject, cpu));
cpuid4_cache_sysfs_exit(cpu);
return retval;
}
kobject_uevent(&(this_object->kobj), KOBJ_ADD);
}
cpumask_set_cpu(cpu, to_cpumask(cache_dev_map));
kobject_uevent(per_cpu(cache_kobject, cpu), KOBJ_ADD);
return 0;
}
static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
{
unsigned int cpu = sys_dev->id;
unsigned long i;
if (per_cpu(cpuid4_info, cpu) == NULL)
return;
if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map)))
return;
cpumask_clear_cpu(cpu, to_cpumask(cache_dev_map));
for (i = 0; i < num_cache_leaves; i++)
kobject_put(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
kobject_put(per_cpu(cache_kobject, cpu));
cpuid4_cache_sysfs_exit(cpu);
}
static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct sys_device *sys_dev;
sys_dev = get_cpu_sysdev(cpu);
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
cache_add_dev(sys_dev);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
cache_remove_dev(sys_dev);
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
{
.notifier_call = cacheinfo_cpu_callback,
};
static int __cpuinit cache_sysfs_init(void)
{
int i;
if (num_cache_leaves == 0)
return 0;
for_each_online_cpu(i) {
int err;
struct sys_device *sys_dev = get_cpu_sysdev(i);
err = cache_add_dev(sys_dev);
if (err)
return err;
}
register_hotcpu_notifier(&cacheinfo_cpu_notifier);
return 0;
}
device_initcall(cache_sysfs_init);
#endif
|