aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/kernel/process_32.c
blob: 3ba155d24884dd812790ff0e5aef8bb6767100d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
/*
 *  Copyright (C) 1995  Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */

/*
 * This file handles the architecture-dependent parts of process handling..
 */

#include <stdarg.h>

#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/utsname.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/ptrace.h>
#include <linux/random.h>
#include <linux/personality.h>
#include <linux/tick.h>
#include <linux/percpu.h>
#include <linux/prctl.h>
#include <linux/dmi.h>
#include <linux/ftrace.h>

#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/ldt.h>
#include <asm/processor.h>
#include <asm/i387.h>
#include <asm/desc.h>
#ifdef CONFIG_MATH_EMULATION
#include <asm/math_emu.h>
#endif

#include <linux/err.h>

#include <asm/tlbflush.h>
#include <asm/cpu.h>
#include <asm/kdebug.h>
#include <asm/idle.h>
#include <asm/syscalls.h>
#include <asm/smp.h>
#include <asm/ds.h>

asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");

DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
EXPORT_PER_CPU_SYMBOL(current_task);

DEFINE_PER_CPU(int, cpu_number);
EXPORT_PER_CPU_SYMBOL(cpu_number);

/*
 * Return saved PC of a blocked thread.
 */
unsigned long thread_saved_pc(struct task_struct *tsk)
{
	return ((unsigned long *)tsk->thread.sp)[3];
}

#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

/*
 * The idle thread. There's no useful work to be
 * done, so just try to conserve power and have a
 * low exit latency (ie sit in a loop waiting for
 * somebody to say that they'd like to reschedule)
 */
void cpu_idle(void)
{
	int cpu = smp_processor_id();

	current_thread_info()->status |= TS_POLLING;

	/* endless idle loop with no priority at all */
	while (1) {
		tick_nohz_stop_sched_tick(1);
		while (!need_resched()) {

			check_pgt_cache();
			rmb();

			if (rcu_pending(cpu))
				rcu_check_callbacks(cpu, 0);

			if (cpu_is_offline(cpu))
				play_dead();

			local_irq_disable();
			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
			/* Don't trace irqs off for idle */
			stop_critical_timings();
			pm_idle();
			start_critical_timings();
		}
		tick_nohz_restart_sched_tick();
		preempt_enable_no_resched();
		schedule();
		preempt_disable();
	}
}

void __show_regs(struct pt_regs *regs, int all)
{
	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
	unsigned long d0, d1, d2, d3, d6, d7;
	unsigned long sp;
	unsigned short ss, gs;
	const char *board;

	if (user_mode_vm(regs)) {
		sp = regs->sp;
		ss = regs->ss & 0xffff;
		savesegment(gs, gs);
	} else {
		sp = (unsigned long) (&regs->sp);
		savesegment(ss, ss);
		savesegment(gs, gs);
	}

	printk("\n");

	board = dmi_get_system_info(DMI_PRODUCT_NAME);
	if (!board)
		board = "";
	printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
			task_pid_nr(current), current->comm,
			print_tainted(), init_utsname()->release,
			(int)strcspn(init_utsname()->version, " "),
			init_utsname()->version, board);

	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
			(u16)regs->cs, regs->ip, regs->flags,
			smp_processor_id());
	print_symbol("EIP is at %s\n", regs->ip);

	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
		regs->ax, regs->bx, regs->cx, regs->dx);
	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
		regs->si, regs->di, regs->bp, sp);
	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);

	if (!all)
		return;

	cr0 = read_cr0();
	cr2 = read_cr2();
	cr3 = read_cr3();
	cr4 = read_cr4_safe();
	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
			cr0, cr2, cr3, cr4);

	get_debugreg(d0, 0);
	get_debugreg(d1, 1);
	get_debugreg(d2, 2);
	get_debugreg(d3, 3);
	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
			d0, d1, d2, d3);

	get_debugreg(d6, 6);
	get_debugreg(d7, 7);
	printk("DR6: %08lx DR7: %08lx\n",
			d6, d7);
}

void show_regs(struct pt_regs *regs)
{
	__show_regs(regs, 1);
	show_trace(NULL, regs, &regs->sp, regs->bp);
}

/*
 * This gets run with %bx containing the
 * function to call, and %dx containing
 * the "args".
 */
extern void kernel_thread_helper(void);

/*
 * Create a kernel thread
 */
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
	struct pt_regs regs;

	memset(&regs, 0, sizeof(regs));

	regs.bx = (unsigned long) fn;
	regs.dx = (unsigned long) arg;

	regs.ds = __USER_DS;
	regs.es = __USER_DS;
	regs.fs = __KERNEL_PERCPU;
	regs.orig_ax = -1;
	regs.ip = (unsigned long) kernel_thread_helper;
	regs.cs = __KERNEL_CS | get_kernel_rpl();
	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;

	/* Ok, create the new process.. */
	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
}
EXPORT_SYMBOL(kernel_thread);

/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
	/* The process may have allocated an io port bitmap... nuke it. */
	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
		struct task_struct *tsk = current;
		struct thread_struct *t = &tsk->thread;
		int cpu = get_cpu();
		struct tss_struct *tss = &per_cpu(init_tss, cpu);

		kfree(t->io_bitmap_ptr);
		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
		t->io_bitmap_max = 0;
		tss->io_bitmap_owner = NULL;
		tss->io_bitmap_max = 0;
		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
		put_cpu();
	}

	ds_exit_thread(current);
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

	tsk->thread.debugreg0 = 0;
	tsk->thread.debugreg1 = 0;
	tsk->thread.debugreg2 = 0;
	tsk->thread.debugreg3 = 0;
	tsk->thread.debugreg6 = 0;
	tsk->thread.debugreg7 = 0;
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));	
	clear_tsk_thread_flag(tsk, TIF_DEBUG);
	/*
	 * Forget coprocessor state..
	 */
	tsk->fpu_counter = 0;
	clear_fpu(tsk);
	clear_used_math();
}

void release_thread(struct task_struct *dead_task)
{
	BUG_ON(dead_task->mm);
	release_vm86_irqs(dead_task);
}

/*
 * This gets called before we allocate a new thread and copy
 * the current task into it.
 */
void prepare_to_copy(struct task_struct *tsk)
{
	unlazy_fpu(tsk);
}

int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
	unsigned long unused,
	struct task_struct * p, struct pt_regs * regs)
{
	struct pt_regs * childregs;
	struct task_struct *tsk;
	int err;

	childregs = task_pt_regs(p);
	*childregs = *regs;
	childregs->ax = 0;
	childregs->sp = sp;

	p->thread.sp = (unsigned long) childregs;
	p->thread.sp0 = (unsigned long) (childregs+1);

	p->thread.ip = (unsigned long) ret_from_fork;

	savesegment(gs, p->thread.gs);

	tsk = current;
	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
						IO_BITMAP_BYTES, GFP_KERNEL);
		if (!p->thread.io_bitmap_ptr) {
			p->thread.io_bitmap_max = 0;
			return -ENOMEM;
		}
		set_tsk_thread_flag(p, TIF_IO_BITMAP);
	}

	err = 0;

	/*
	 * Set a new TLS for the child thread?
	 */
	if (clone_flags & CLONE_SETTLS)
		err = do_set_thread_area(p, -1,
			(struct user_desc __user *)childregs->si, 0);

	if (err && p->thread.io_bitmap_ptr) {
		kfree(p->thread.io_bitmap_ptr);
		p->thread.io_bitmap_max = 0;
	}

	ds_copy_thread(p, current);

	clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR);
	p->thread.debugctlmsr = 0;

	return err;
}

void
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
{
	__asm__("movl %0, %%gs" :: "r"(0));
	regs->fs		= 0;
	set_fs(USER_DS);
	regs->ds		= __USER_DS;
	regs->es		= __USER_DS;
	regs->ss		= __USER_DS;
	regs->cs		= __USER_CS;
	regs->ip		= new_ip;
	regs->sp		= new_sp;
	/*
	 * Free the old FP and other extended state
	 */
	free_thread_xstate(current);
}
EXPORT_SYMBOL_GPL(start_thread);

static void hard_disable_TSC(void)
{
	write_cr4(read_cr4() | X86_CR4_TSD);
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
	write_cr4(read_cr4() & ~X86_CR4_TSD);
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

static noinline void
__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		 struct tss_struct *tss)
{
	struct thread_struct *prev, *next;

	prev = &prev_p->thread;
	next = &next_p->thread;

	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
		ds_switch_to(prev_p, next_p);
	else if (next->debugctlmsr != prev->debugctlmsr)
		update_debugctlmsr(next->debugctlmsr);

	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
		set_debugreg(next->debugreg0, 0);
		set_debugreg(next->debugreg1, 1);
		set_debugreg(next->debugreg2, 2);
		set_debugreg(next->debugreg3, 3);
		/* no 4 and 5 */
		set_debugreg(next->debugreg6, 6);
		set_debugreg(next->debugreg7, 7);
	}

	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
		/* prev and next are different */
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}

	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
		/*
		 * Disable the bitmap via an invalid offset. We still cache
		 * the previous bitmap owner and the IO bitmap contents:
		 */
		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
		return;
	}

	if (likely(next == tss->io_bitmap_owner)) {
		/*
		 * Previous owner of the bitmap (hence the bitmap content)
		 * matches the next task, we dont have to do anything but
		 * to set a valid offset in the TSS:
		 */
		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
		return;
	}
	/*
	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
	 * and we let the task to get a GPF in case an I/O instruction
	 * is performed.  The handler of the GPF will verify that the
	 * faulting task has a valid I/O bitmap and, it true, does the
	 * real copy and restart the instruction.  This will save us
	 * redundant copies when the currently switched task does not
	 * perform any I/O during its timeslice.
	 */
	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
}

/*
 *	switch_to(x,yn) should switch tasks from x to y.
 *
 * We fsave/fwait so that an exception goes off at the right time
 * (as a call from the fsave or fwait in effect) rather than to
 * the wrong process. Lazy FP saving no longer makes any sense
 * with modern CPU's, and this simplifies a lot of things (SMP
 * and UP become the same).
 *
 * NOTE! We used to use the x86 hardware context switching. The
 * reason for not using it any more becomes apparent when you
 * try to recover gracefully from saved state that is no longer
 * valid (stale segment register values in particular). With the
 * hardware task-switch, there is no way to fix up bad state in
 * a reasonable manner.
 *
 * The fact that Intel documents the hardware task-switching to
 * be slow is a fairly red herring - this code is not noticeably
 * faster. However, there _is_ some room for improvement here,
 * so the performance issues may eventually be a valid point.
 * More important, however, is the fact that this allows us much
 * more flexibility.
 *
 * The return value (in %ax) will be the "prev" task after
 * the task-switch, and shows up in ret_from_fork in entry.S,
 * for example.
 */
__notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
	struct thread_struct *prev = &prev_p->thread,
				 *next = &next_p->thread;
	int cpu = smp_processor_id();
	struct tss_struct *tss = &per_cpu(init_tss, cpu);

	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */

	__unlazy_fpu(prev_p);


	/* we're going to use this soon, after a few expensive things */
	if (next_p->fpu_counter > 5)
		prefetch(next->xstate);

	/*
	 * Reload esp0.
	 */
	load_sp0(tss, next);

	/*
	 * Save away %gs. No need to save %fs, as it was saved on the
	 * stack on entry.  No need to save %es and %ds, as those are
	 * always kernel segments while inside the kernel.  Doing this
	 * before setting the new TLS descriptors avoids the situation
	 * where we temporarily have non-reloadable segments in %fs
	 * and %gs.  This could be an issue if the NMI handler ever
	 * used %fs or %gs (it does not today), or if the kernel is
	 * running inside of a hypervisor layer.
	 */
	savesegment(gs, prev->gs);

	/*
	 * Load the per-thread Thread-Local Storage descriptor.
	 */
	load_TLS(next, cpu);

	/*
	 * Restore IOPL if needed.  In normal use, the flags restore
	 * in the switch assembly will handle this.  But if the kernel
	 * is running virtualized at a non-zero CPL, the popf will
	 * not restore flags, so it must be done in a separate step.
	 */
	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
		set_iopl_mask(next->iopl);

	/*
	 * Now maybe handle debug registers and/or IO bitmaps
	 */
	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
		__switch_to_xtra(prev_p, next_p, tss);

	/*
	 * Leave lazy mode, flushing any hypercalls made here.
	 * This must be done before restoring TLS segments so
	 * the GDT and LDT are properly updated, and must be
	 * done before math_state_restore, so the TS bit is up
	 * to date.
	 */
	arch_leave_lazy_cpu_mode();

	/* If the task has used fpu the last 5 timeslices, just do a full
	 * restore of the math state immediately to avoid the trap; the
	 * chances of needing FPU soon are obviously high now
	 *
	 * tsk_used_math() checks prevent calling math_state_restore(),
	 * which can sleep in the case of !tsk_used_math()
	 */
	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
		math_state_restore();

	/*
	 * Restore %gs if needed (which is common)
	 */
	if (prev->gs | next->gs)
		loadsegment(gs, next->gs);

	x86_write_percpu(current_task, next_p);

	return prev_p;
}

asmlinkage int sys_fork(struct pt_regs regs)
{
	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
}

asmlinkage int sys_clone(struct pt_regs regs)
{
	unsigned long clone_flags;
	unsigned long newsp;
	int __user *parent_tidptr, *child_tidptr;

	clone_flags = regs.bx;
	newsp = regs.cx;
	parent_tidptr = (int __user *)regs.dx;
	child_tidptr = (int __user *)regs.di;
	if (!newsp)
		newsp = regs.sp;
	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
}

/*
 * This is trivial, and on the face of it looks like it
 * could equally well be done in user mode.
 *
 * Not so, for quite unobvious reasons - register pressure.
 * In user mode vfork() cannot have a stack frame, and if
 * done by calling the "clone()" system call directly, you
 * do not have enough call-clobbered registers to hold all
 * the information you need.
 */
asmlinkage int sys_vfork(struct pt_regs regs)
{
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
}

/*
 * sys_execve() executes a new program.
 */
asmlinkage int sys_execve(struct pt_regs regs)
{
	int error;
	char * filename;

	filename = getname((char __user *) regs.bx);
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	error = do_execve(filename,
			(char __user * __user *) regs.cx,
			(char __user * __user *) regs.dx,
			&regs);
	if (error == 0) {
		/* Make sure we don't return using sysenter.. */
		set_thread_flag(TIF_IRET);
	}
	putname(filename);
out:
	return error;
}

#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))

unsigned long get_wchan(struct task_struct *p)
{
	unsigned long bp, sp, ip;
	unsigned long stack_page;
	int count = 0;
	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;
	stack_page = (unsigned long)task_stack_page(p);
	sp = p->thread.sp;
	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
		return 0;
	/* include/asm-i386/system.h:switch_to() pushes bp last. */
	bp = *(unsigned long *) sp;
	do {
		if (bp < stack_page || bp > top_ebp+stack_page)
			return 0;
		ip = *(unsigned long *) (bp+4);
		if (!in_sched_functions(ip))
			return ip;
		bp = *(unsigned long *) bp;
	} while (count++ < 16);
	return 0;
}

unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	unsigned long range_end = mm->brk + 0x02000000;
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}