aboutsummaryrefslogtreecommitdiff
path: root/drivers/cpufreq/cpufreq_ondemand.c
blob: 2ab3c12b88afbd733fe5fd521a8dcc98540f8f3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*
 *  drivers/cpufreq/cpufreq_ondemand.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/mutex.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>

/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
#define MIN_FREQUENCY_UP_THRESHOLD		(11)
#define MAX_FREQUENCY_UP_THRESHOLD		(100)

/*
 * The polling frequency of this governor depends on the capability of
 * the processor. Default polling frequency is 1000 times the transition
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
static unsigned int def_sampling_rate;
#define MIN_SAMPLING_RATE_RATIO			(2)
/* for correct statistics, we need at least 10 ticks between each measure */
#define MIN_STAT_SAMPLING_RATE 			\
			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
#define MIN_SAMPLING_RATE			\
			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)

static void do_dbs_timer(struct work_struct *work);

/* Sampling types */
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};

struct cpu_dbs_info_s {
	cputime64_t prev_cpu_idle;
	cputime64_t prev_cpu_wall;
	cputime64_t prev_cpu_nice;
	struct cpufreq_policy *cur_policy;
 	struct delayed_work work;
	struct cpufreq_frequency_table *freq_table;
	unsigned int freq_lo;
	unsigned int freq_lo_jiffies;
	unsigned int freq_hi_jiffies;
	int cpu;
	unsigned int enable:1,
	             sample_type:1;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

/*
 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
 * lock and dbs_mutex. cpu_hotplug lock should always be held before
 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
 * is recursive for the same process. -Venki
 */
static DEFINE_MUTEX(dbs_mutex);

static struct workqueue_struct	*kondemand_wq;

static struct dbs_tuners {
	unsigned int sampling_rate;
	unsigned int up_threshold;
	unsigned int down_differential;
	unsigned int ignore_nice;
	unsigned int powersave_bias;
} dbs_tuners_ins = {
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
	.ignore_nice = 0,
	.powersave_bias = 0,
};

static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
							cputime64_t *wall)
{
	cputime64_t idle_time;
	cputime64_t cur_wall_time;
	cputime64_t busy_time;

	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
			kstat_cpu(cpu).cpustat.system);

	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);

	if (!dbs_tuners_ins.ignore_nice) {
		busy_time = cputime64_add(busy_time,
				kstat_cpu(cpu).cpustat.nice);
	}

	idle_time = cputime64_sub(cur_wall_time, busy_time);
	if (wall)
		*wall = cur_wall_time;

	return idle_time;
}

static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
	u64 idle_time = get_cpu_idle_time_us(cpu, wall);

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);

	if (dbs_tuners_ins.ignore_nice) {
		cputime64_t cur_nice;
		unsigned long cur_nice_jiffies;
		struct cpu_dbs_info_s *dbs_info;

		dbs_info = &per_cpu(cpu_dbs_info, cpu);
		cur_nice = cputime64_sub(kstat_cpu(cpu).cpustat.nice,
					 dbs_info->prev_cpu_nice);
		/*
		 * Assumption: nice time between sampling periods will be
		 * less than 2^32 jiffies for 32 bit sys
		 */
		cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);
		dbs_info->prev_cpu_nice = kstat_cpu(cpu).cpustat.nice;
		return idle_time + jiffies_to_usecs(cur_nice_jiffies);
	}
	return idle_time;
}

/*
 * Find right freq to be set now with powersave_bias on.
 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
 */
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
					  unsigned int freq_next,
					  unsigned int relation)
{
	unsigned int freq_req, freq_reduc, freq_avg;
	unsigned int freq_hi, freq_lo;
	unsigned int index = 0;
	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);

	if (!dbs_info->freq_table) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_next;
	}

	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
			relation, &index);
	freq_req = dbs_info->freq_table[index].frequency;
	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
	freq_avg = freq_req - freq_reduc;

	/* Find freq bounds for freq_avg in freq_table */
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_H, &index);
	freq_lo = dbs_info->freq_table[index].frequency;
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_L, &index);
	freq_hi = dbs_info->freq_table[index].frequency;

	/* Find out how long we have to be in hi and lo freqs */
	if (freq_hi == freq_lo) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_lo;
	}
	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
	jiffies_hi += ((freq_hi - freq_lo) / 2);
	jiffies_hi /= (freq_hi - freq_lo);
	jiffies_lo = jiffies_total - jiffies_hi;
	dbs_info->freq_lo = freq_lo;
	dbs_info->freq_lo_jiffies = jiffies_lo;
	dbs_info->freq_hi_jiffies = jiffies_hi;
	return freq_hi;
}

static void ondemand_powersave_bias_init(void)
{
	int i;
	for_each_online_cpu(i) {
		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
		dbs_info->freq_table = cpufreq_frequency_get_table(i);
		dbs_info->freq_lo = 0;
	}
}

/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
}

#define define_one_ro(_name)		\
static struct freq_attr _name =		\
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_ondemand Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(up_threshold, up_threshold);
show_one(ignore_nice_load, ignore_nice);
show_one(powersave_bias, powersave_bias);

static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	mutex_lock(&dbs_mutex);
	if (ret != 1 || input > MAX_SAMPLING_RATE
		     || input < MIN_SAMPLING_RATE) {
		mutex_unlock(&dbs_mutex);
		return -EINVAL;
	}

	dbs_tuners_ins.sampling_rate = input;
	mutex_unlock(&dbs_mutex);

	return count;
}

static ssize_t store_up_threshold(struct cpufreq_policy *unused,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	mutex_lock(&dbs_mutex);
	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
			input < MIN_FREQUENCY_UP_THRESHOLD) {
		mutex_unlock(&dbs_mutex);
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
	mutex_unlock(&dbs_mutex);

	return count;
}

static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;

	ret = sscanf(buf, "%u", &input);
	if ( ret != 1 )
		return -EINVAL;

	if ( input > 1 )
		input = 1;

	mutex_lock(&dbs_mutex);
	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
		mutex_unlock(&dbs_mutex);
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

	/* we need to re-evaluate prev_cpu_idle */
	for_each_online_cpu(j) {
		struct cpu_dbs_info_s *dbs_info;
		dbs_info = &per_cpu(cpu_dbs_info, j);
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
	}
	mutex_unlock(&dbs_mutex);

	return count;
}

static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1)
		return -EINVAL;

	if (input > 1000)
		input = 1000;

	mutex_lock(&dbs_mutex);
	dbs_tuners_ins.powersave_bias = input;
	ondemand_powersave_bias_init();
	mutex_unlock(&dbs_mutex);

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(up_threshold);
define_one_rw(ignore_nice_load);
define_one_rw(powersave_bias);

static struct attribute * dbs_attributes[] = {
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&up_threshold.attr,
	&ignore_nice_load.attr,
	&powersave_bias.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "ondemand",
};

/************************** sysfs end ************************/

static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
{
	unsigned int max_load_freq;

	struct cpufreq_policy *policy;
	unsigned int j;

	if (!this_dbs_info->enable)
		return;

	this_dbs_info->freq_lo = 0;
	policy = this_dbs_info->cur_policy;

	/*
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
	 * Every sampling_rate, we look for a the lowest
	 * frequency which can sustain the load while keeping idle time over
	 * 30%. If such a frequency exist, we try to decrease to this frequency.
	 *
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
	 * 5% (default) of current frequency
	 */

	/* Get Absolute Load - in terms of freq */
	max_load_freq = 0;

	for_each_cpu_mask_nr(j, policy->cpus) {
		struct cpu_dbs_info_s *j_dbs_info;
		cputime64_t cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
		unsigned int load, load_freq;
		int freq_avg;

		j_dbs_info = &per_cpu(cpu_dbs_info, j);

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);

		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
				j_dbs_info->prev_cpu_wall);
		j_dbs_info->prev_cpu_wall = cur_wall_time;

		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
				j_dbs_info->prev_cpu_idle);
		j_dbs_info->prev_cpu_idle = cur_idle_time;

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;

		freq_avg = __cpufreq_driver_getavg(policy, j);
		if (freq_avg <= 0)
			freq_avg = policy->cur;

		load_freq = load * freq_avg;
		if (load_freq > max_load_freq)
			max_load_freq = load_freq;
	}

	/* Check for frequency increase */
	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
		/* if we are already at full speed then break out early */
		if (!dbs_tuners_ins.powersave_bias) {
			if (policy->cur == policy->max)
				return;

			__cpufreq_driver_target(policy, policy->max,
				CPUFREQ_RELATION_H);
		} else {
			int freq = powersave_bias_target(policy, policy->max,
					CPUFREQ_RELATION_H);
			__cpufreq_driver_target(policy, freq,
				CPUFREQ_RELATION_L);
		}
		return;
	}

	/* Check for frequency decrease */
	/* if we cannot reduce the frequency anymore, break out early */
	if (policy->cur == policy->min)
		return;

	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
	if (max_load_freq <
	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
	     policy->cur) {
		unsigned int freq_next;
		freq_next = max_load_freq /
				(dbs_tuners_ins.up_threshold -
				 dbs_tuners_ins.down_differential);

		if (!dbs_tuners_ins.powersave_bias) {
			__cpufreq_driver_target(policy, freq_next,
					CPUFREQ_RELATION_L);
		} else {
			int freq = powersave_bias_target(policy, freq_next,
					CPUFREQ_RELATION_L);
			__cpufreq_driver_target(policy, freq,
				CPUFREQ_RELATION_L);
		}
	}
}

static void do_dbs_timer(struct work_struct *work)
{
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;
	int sample_type = dbs_info->sample_type;

	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);

	delay -= jiffies % delay;

	if (lock_policy_rwsem_write(cpu) < 0)
		return;

	if (!dbs_info->enable) {
		unlock_policy_rwsem_write(cpu);
		return;
	}

	/* Common NORMAL_SAMPLE setup */
	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
	if (!dbs_tuners_ins.powersave_bias ||
	    sample_type == DBS_NORMAL_SAMPLE) {
		dbs_check_cpu(dbs_info);
		if (dbs_info->freq_lo) {
			/* Setup timer for SUB_SAMPLE */
			dbs_info->sample_type = DBS_SUB_SAMPLE;
			delay = dbs_info->freq_hi_jiffies;
		}
	} else {
		__cpufreq_driver_target(dbs_info->cur_policy,
	                        	dbs_info->freq_lo,
	                        	CPUFREQ_RELATION_H);
	}
	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
	unlock_policy_rwsem_write(cpu);
}

static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
{
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;

	dbs_info->enable = 1;
	ondemand_powersave_bias_init();
	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
	                      delay);
}

static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
{
	dbs_info->enable = 0;
	cancel_delayed_work(&dbs_info->work);
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
	int rc;

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
		if ((!cpu_online(cpu)) || (!policy->cur))
			return -EINVAL;

		if (this_dbs_info->enable) /* Already enabled */
			break;

		mutex_lock(&dbs_mutex);
		dbs_enable++;

		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
		if (rc) {
			dbs_enable--;
			mutex_unlock(&dbs_mutex);
			return rc;
		}

		for_each_cpu_mask_nr(j, policy->cpus) {
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;

			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
		}
		this_dbs_info->cpu = cpu;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;

			def_sampling_rate = latency *
					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;

			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
				def_sampling_rate = MIN_STAT_SAMPLING_RATE;

			dbs_tuners_ins.sampling_rate = def_sampling_rate;
		}
		dbs_timer_init(this_dbs_info);

		mutex_unlock(&dbs_mutex);
		break;

	case CPUFREQ_GOV_STOP:
		mutex_lock(&dbs_mutex);
		dbs_timer_exit(this_dbs_info);
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
		mutex_unlock(&dbs_mutex);

		break;

	case CPUFREQ_GOV_LIMITS:
		mutex_lock(&dbs_mutex);
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(this_dbs_info->cur_policy,
			                        policy->max,
			                        CPUFREQ_RELATION_H);
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(this_dbs_info->cur_policy,
			                        policy->min,
			                        CPUFREQ_RELATION_L);
		mutex_unlock(&dbs_mutex);
		break;
	}
	return 0;
}

#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static
#endif
struct cpufreq_governor cpufreq_gov_ondemand = {
	.name			= "ondemand",
	.governor		= cpufreq_governor_dbs,
	.max_transition_latency = TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
};

static int __init cpufreq_gov_dbs_init(void)
{
	int err;
	cputime64_t wall;
	u64 idle_time;
	int cpu = get_cpu();

	idle_time = get_cpu_idle_time_us(cpu, &wall);
	put_cpu();
	if (idle_time != -1ULL) {
		/* Idle micro accounting is supported. Use finer thresholds */
		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
		dbs_tuners_ins.down_differential =
					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
	}

	kondemand_wq = create_workqueue("kondemand");
	if (!kondemand_wq) {
		printk(KERN_ERR "Creation of kondemand failed\n");
		return -EFAULT;
	}
	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
	if (err)
		destroy_workqueue(kondemand_wq);

	return err;
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
	destroy_workqueue(kondemand_wq);
}


MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
                   "Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");

#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);