aboutsummaryrefslogtreecommitdiff
path: root/drivers/infiniband/hw/ipath/ipath_eeprom.c
blob: 72f90e8d5f76b4537039206af0fb5735a35a4459 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/*
 * Copyright (c) 2006, 2007 QLogic Corporation. All rights reserved.
 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>

#include "ipath_kernel.h"

/*
 * InfiniPath I2C driver for a serial eeprom.  This is not a generic
 * I2C interface.  For a start, the device we're using (Atmel AT24C11)
 * doesn't work like a regular I2C device.  It looks like one
 * electrically, but not logically.  Normal I2C devices have a single
 * 7-bit or 10-bit I2C address that they respond to.  Valid 7-bit
 * addresses range from 0x03 to 0x77.  Addresses 0x00 to 0x02 and 0x78
 * to 0x7F are special reserved addresses (e.g. 0x00 is the "general
 * call" address.)  The Atmel device, on the other hand, responds to ALL
 * 7-bit addresses.  It's designed to be the only device on a given I2C
 * bus.  A 7-bit address corresponds to the memory address within the
 * Atmel device itself.
 *
 * Also, the timing requirements mean more than simple software
 * bitbanging, with readbacks from chip to ensure timing (simple udelay
 * is not enough).
 *
 * This all means that accessing the device is specialized enough
 * that using the standard kernel I2C bitbanging interface would be
 * impossible.  For example, the core I2C eeprom driver expects to find
 * a device at one or more of a limited set of addresses only.  It doesn't
 * allow writing to an eeprom.  It also doesn't provide any means of
 * accessing eeprom contents from within the kernel, only via sysfs.
 */

/* Added functionality for IBA7220-based cards */
#define IPATH_EEPROM_DEV_V1 0xA0
#define IPATH_EEPROM_DEV_V2 0xA2
#define IPATH_TEMP_DEV 0x98
#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2)
#define IPATH_NO_DEV (0xFF)

/*
 * The number of I2C chains is proliferating. Table below brings
 * some order to the madness. The basic principle is that the
 * table is scanned from the top, and a "probe" is made to the
 * device probe_dev. If that succeeds, the chain is considered
 * to be of that type, and dd->i2c_chain_type is set to the index+1
 * of the entry.
 * The +1 is so static initialization can mean "unknown, do probe."
 */
static struct i2c_chain_desc {
	u8 probe_dev;	/* If seen at probe, chain is this type */
	u8 eeprom_dev;	/* Dev addr (if any) for EEPROM */
	u8 temp_dev;	/* Dev Addr (if any) for Temp-sense */
} i2c_chains[] = {
	{ IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */
	{ IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */
	{ IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */
	{ IPATH_NO_DEV }
};

enum i2c_type {
	i2c_line_scl = 0,
	i2c_line_sda
};

enum i2c_state {
	i2c_line_low = 0,
	i2c_line_high
};

#define READ_CMD 1
#define WRITE_CMD 0

/**
 * i2c_gpio_set - set a GPIO line
 * @dd: the infinipath device
 * @line: the line to set
 * @new_line_state: the state to set
 *
 * Returns 0 if the line was set to the new state successfully, non-zero
 * on error.
 */
static int i2c_gpio_set(struct ipath_devdata *dd,
			enum i2c_type line,
			enum i2c_state new_line_state)
{
	u64 out_mask, dir_mask, *gpioval;
	unsigned long flags = 0;

	gpioval = &dd->ipath_gpio_out;

	if (line == i2c_line_scl) {
		dir_mask = dd->ipath_gpio_scl;
		out_mask = (1UL << dd->ipath_gpio_scl_num);
	} else {
		dir_mask = dd->ipath_gpio_sda;
		out_mask = (1UL << dd->ipath_gpio_sda_num);
	}

	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
	if (new_line_state == i2c_line_high) {
		/* tri-state the output rather than force high */
		dd->ipath_extctrl &= ~dir_mask;
	} else {
		/* config line to be an output */
		dd->ipath_extctrl |= dir_mask;
	}
	ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);

	/* set output as well (no real verify) */
	if (new_line_state == i2c_line_high)
		*gpioval |= out_mask;
	else
		*gpioval &= ~out_mask;

	ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);

	return 0;
}

/**
 * i2c_gpio_get - get a GPIO line state
 * @dd: the infinipath device
 * @line: the line to get
 * @curr_statep: where to put the line state
 *
 * Returns 0 if the line was set to the new state successfully, non-zero
 * on error.  curr_state is not set on error.
 */
static int i2c_gpio_get(struct ipath_devdata *dd,
			enum i2c_type line,
			enum i2c_state *curr_statep)
{
	u64 read_val, mask;
	int ret;
	unsigned long flags = 0;

	/* check args */
	if (curr_statep == NULL) {
		ret = 1;
		goto bail;
	}

	/* config line to be an input */
	if (line == i2c_line_scl)
		mask = dd->ipath_gpio_scl;
	else
		mask = dd->ipath_gpio_sda;

	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
	dd->ipath_extctrl &= ~mask;
	ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
	/*
	 * Below is very unlikely to reflect true input state if Output
	 * Enable actually changed.
	 */
	read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);

	if (read_val & mask)
		*curr_statep = i2c_line_high;
	else
		*curr_statep = i2c_line_low;

	ret = 0;

bail:
	return ret;
}

/**
 * i2c_wait_for_writes - wait for a write
 * @dd: the infinipath device
 *
 * We use this instead of udelay directly, so we can make sure
 * that previous register writes have been flushed all the way
 * to the chip.  Since we are delaying anyway, the cost doesn't
 * hurt, and makes the bit twiddling more regular
 */
static void i2c_wait_for_writes(struct ipath_devdata *dd)
{
	(void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
	rmb();
}

static void scl_out(struct ipath_devdata *dd, u8 bit)
{
	udelay(1);
	i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);

	i2c_wait_for_writes(dd);
}

static void sda_out(struct ipath_devdata *dd, u8 bit)
{
	i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);

	i2c_wait_for_writes(dd);
}

static u8 sda_in(struct ipath_devdata *dd, int wait)
{
	enum i2c_state bit;

	if (i2c_gpio_get(dd, i2c_line_sda, &bit))
		ipath_dbg("get bit failed!\n");

	if (wait)
		i2c_wait_for_writes(dd);

	return bit == i2c_line_high ? 1U : 0;
}

/**
 * i2c_ackrcv - see if ack following write is true
 * @dd: the infinipath device
 */
static int i2c_ackrcv(struct ipath_devdata *dd)
{
	u8 ack_received;

	/* AT ENTRY SCL = LOW */
	/* change direction, ignore data */
	ack_received = sda_in(dd, 1);
	scl_out(dd, i2c_line_high);
	ack_received = sda_in(dd, 1) == 0;
	scl_out(dd, i2c_line_low);
	return ack_received;
}

/**
 * rd_byte - read a byte, leaving ACK, STOP, etc up to caller
 * @dd: the infinipath device
 *
 * Returns byte shifted out of device
 */
static int rd_byte(struct ipath_devdata *dd)
{
	int bit_cntr, data;

	data = 0;

	for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
		data <<= 1;
		scl_out(dd, i2c_line_high);
		data |= sda_in(dd, 0);
		scl_out(dd, i2c_line_low);
	}
	return data;
}

/**
 * wr_byte - write a byte, one bit at a time
 * @dd: the infinipath device
 * @data: the byte to write
 *
 * Returns 0 if we got the following ack, otherwise 1
 */
static int wr_byte(struct ipath_devdata *dd, u8 data)
{
	int bit_cntr;
	u8 bit;

	for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
		bit = (data >> bit_cntr) & 1;
		sda_out(dd, bit);
		scl_out(dd, i2c_line_high);
		scl_out(dd, i2c_line_low);
	}
	return (!i2c_ackrcv(dd)) ? 1 : 0;
}

static void send_ack(struct ipath_devdata *dd)
{
	sda_out(dd, i2c_line_low);
	scl_out(dd, i2c_line_high);
	scl_out(dd, i2c_line_low);
	sda_out(dd, i2c_line_high);
}

/**
 * i2c_startcmd - transmit the start condition, followed by address/cmd
 * @dd: the infinipath device
 * @offset_dir: direction byte
 *
 *      (both clock/data high, clock high, data low while clock is high)
 */
static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
{
	int res;

	/* issue start sequence */
	sda_out(dd, i2c_line_high);
	scl_out(dd, i2c_line_high);
	sda_out(dd, i2c_line_low);
	scl_out(dd, i2c_line_low);

	/* issue length and direction byte */
	res = wr_byte(dd, offset_dir);

	if (res)
		ipath_cdbg(VERBOSE, "No ack to complete start\n");

	return res;
}

/**
 * stop_cmd - transmit the stop condition
 * @dd: the infinipath device
 *
 * (both clock/data low, clock high, data high while clock is high)
 */
static void stop_cmd(struct ipath_devdata *dd)
{
	scl_out(dd, i2c_line_low);
	sda_out(dd, i2c_line_low);
	scl_out(dd, i2c_line_high);
	sda_out(dd, i2c_line_high);
	udelay(2);
}

/**
 * eeprom_reset - reset I2C communication
 * @dd: the infinipath device
 */

static int eeprom_reset(struct ipath_devdata *dd)
{
	int clock_cycles_left = 9;
	u64 *gpioval = &dd->ipath_gpio_out;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
	/* Make sure shadows are consistent */
	dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
	*gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);

	ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
		   "is %llx\n", (unsigned long long) *gpioval);

	/*
	 * This is to get the i2c into a known state, by first going low,
	 * then tristate sda (and then tristate scl as first thing
	 * in loop)
	 */
	scl_out(dd, i2c_line_low);
	sda_out(dd, i2c_line_high);

	/* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */
	while (clock_cycles_left--) {
		scl_out(dd, i2c_line_high);

		/* SDA seen high, issue START by dropping it while SCL high */
		if (sda_in(dd, 0)) {
			sda_out(dd, i2c_line_low);
			scl_out(dd, i2c_line_low);
			/* ATMEL spec says must be followed by STOP. */
			scl_out(dd, i2c_line_high);
			sda_out(dd, i2c_line_high);
			ret = 0;
			goto bail;
		}

		scl_out(dd, i2c_line_low);
	}

	ret = 1;

bail:
	return ret;
}

/*
 * Probe for I2C device at specified address. Returns 0 for "success"
 * to match rest of this file.
 * Leave bus in "reasonable" state for further commands.
 */
static int i2c_probe(struct ipath_devdata *dd, int devaddr)
{
	int ret = 0;

	ret = eeprom_reset(dd);
	if (ret) {
		ipath_dev_err(dd, "Failed reset probing device 0x%02X\n",
			      devaddr);
		return ret;
	}
	/*
	 * Reset no longer leaves bus in start condition, so normal
	 * i2c_startcmd() will do.
	 */
	ret = i2c_startcmd(dd, devaddr | READ_CMD);
	if (ret)
		ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n",
			   devaddr);
	else {
		/*
		 * Device did respond. Complete a single-byte read, because some
		 * devices apparently cannot handle STOP immediately after they
		 * ACK the start-cmd.
		 */
		int data;
		data = rd_byte(dd);
		stop_cmd(dd);
		ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr);
	}
	return ret;
}

/*
 * Returns the "i2c type". This is a pointer to a struct that describes
 * the I2C chain on this board. To minimize impact on struct ipath_devdata,
 * the (small integer) index into the table is actually memoized, rather
 * then the pointer.
 * Memoization is because the type is determined on the first call per chip.
 * An alternative would be to move type determination to early
 * init code.
 */
static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd)
{
	int idx;

	/* Get memoized index, from previous successful probes */
	idx = dd->ipath_i2c_chain_type - 1;
	if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1))
		goto done;

	idx = 0;
	while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) {
		/* if probe succeeds, this is type */
		if (!i2c_probe(dd, i2c_chains[idx].probe_dev))
			break;
		++idx;
	}

	/*
	 * Old EEPROM (first entry) may require a reset after probe,
	 * rather than being able to "start" after "stop"
	 */
	if (idx == 0)
		eeprom_reset(dd);

	if (i2c_chains[idx].probe_dev == IPATH_NO_DEV)
		idx = -1;
	else
		dd->ipath_i2c_chain_type = idx + 1;
done:
	return (idx >= 0) ? i2c_chains + idx : NULL;
}

static int ipath_eeprom_internal_read(struct ipath_devdata *dd,
					u8 eeprom_offset, void *buffer, int len)
{
	int ret;
	struct i2c_chain_desc *icd;
	u8 *bp = buffer;

	ret = 1;
	icd = ipath_i2c_type(dd);
	if (!icd)
		goto bail;

	if (icd->eeprom_dev == IPATH_NO_DEV) {
		/* legacy not-really-I2C */
		ipath_cdbg(VERBOSE, "Start command only address\n");
		eeprom_offset = (eeprom_offset << 1) | READ_CMD;
		ret = i2c_startcmd(dd, eeprom_offset);
	} else {
		/* Actual I2C */
		ipath_cdbg(VERBOSE, "Start command uses devaddr\n");
		if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
			ipath_dbg("Failed EEPROM startcmd\n");
			stop_cmd(dd);
			ret = 1;
			goto bail;
		}
		ret = wr_byte(dd, eeprom_offset);
		stop_cmd(dd);
		if (ret) {
			ipath_dev_err(dd, "Failed to write EEPROM address\n");
			ret = 1;
			goto bail;
		}
		ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD);
	}
	if (ret) {
		ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev);
		stop_cmd(dd);
		ret = 1;
		goto bail;
	}

	/*
	 * eeprom keeps clocking data out as long as we ack, automatically
	 * incrementing the address.
	 */
	while (len-- > 0) {
		/* get and store data */
		*bp++ = rd_byte(dd);
		/* send ack if not the last byte */
		if (len)
			send_ack(dd);
	}

	stop_cmd(dd);

	ret = 0;

bail:
	return ret;
}

static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset,
				       const void *buffer, int len)
{
	int sub_len;
	const u8 *bp = buffer;
	int max_wait_time, i;
	int ret;
	struct i2c_chain_desc *icd;

	ret = 1;
	icd = ipath_i2c_type(dd);
	if (!icd)
		goto bail;

	while (len > 0) {
		if (icd->eeprom_dev == IPATH_NO_DEV) {
			if (i2c_startcmd(dd,
					 (eeprom_offset << 1) | WRITE_CMD)) {
				ipath_dbg("Failed to start cmd offset %u\n",
					eeprom_offset);
				goto failed_write;
			}
		} else {
			/* Real I2C */
			if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
				ipath_dbg("Failed EEPROM startcmd\n");
				goto failed_write;
			}
			ret = wr_byte(dd, eeprom_offset);
			if (ret) {
				ipath_dev_err(dd, "Failed to write EEPROM "
					      "address\n");
				goto failed_write;
			}
		}

		sub_len = min(len, 4);
		eeprom_offset += sub_len;
		len -= sub_len;

		for (i = 0; i < sub_len; i++) {
			if (wr_byte(dd, *bp++)) {
				ipath_dbg("no ack after byte %u/%u (%u "
					  "total remain)\n", i, sub_len,
					  len + sub_len - i);
				goto failed_write;
			}
		}

		stop_cmd(dd);

		/*
		 * wait for write complete by waiting for a successful
		 * read (the chip replies with a zero after the write
		 * cmd completes, and before it writes to the eeprom.
		 * The startcmd for the read will fail the ack until
		 * the writes have completed.   We do this inline to avoid
		 * the debug prints that are in the real read routine
		 * if the startcmd fails.
		 * We also use the proper device address, so it doesn't matter
		 * whether we have real eeprom_dev. legacy likes any address.
		 */
		max_wait_time = 100;
		while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) {
			stop_cmd(dd);
			if (!--max_wait_time) {
				ipath_dbg("Did not get successful read to "
					  "complete write\n");
				goto failed_write;
			}
		}
		/* now read (and ignore) the resulting byte */
		rd_byte(dd);
		stop_cmd(dd);
	}

	ret = 0;
	goto bail;

failed_write:
	stop_cmd(dd);
	ret = 1;

bail:
	return ret;
}

/**
 * ipath_eeprom_read - receives bytes from the eeprom via I2C
 * @dd: the infinipath device
 * @eeprom_offset: address to read from
 * @buffer: where to store result
 * @len: number of bytes to receive
 */
int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
			void *buff, int len)
{
	int ret;

	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (!ret) {
		ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len);
		mutex_unlock(&dd->ipath_eep_lock);
	}

	return ret;
}

/**
 * ipath_eeprom_write - writes data to the eeprom via I2C
 * @dd: the infinipath device
 * @eeprom_offset: where to place data
 * @buffer: data to write
 * @len: number of bytes to write
 */
int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
			const void *buff, int len)
{
	int ret;

	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (!ret) {
		ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len);
		mutex_unlock(&dd->ipath_eep_lock);
	}

	return ret;
}

static u8 flash_csum(struct ipath_flash *ifp, int adjust)
{
	u8 *ip = (u8 *) ifp;
	u8 csum = 0, len;

	/*
	 * Limit length checksummed to max length of actual data.
	 * Checksum of erased eeprom will still be bad, but we avoid
	 * reading past the end of the buffer we were passed.
	 */
	len = ifp->if_length;
	if (len > sizeof(struct ipath_flash))
		len = sizeof(struct ipath_flash);
	while (len--)
		csum += *ip++;
	csum -= ifp->if_csum;
	csum = ~csum;
	if (adjust)
		ifp->if_csum = csum;

	return csum;
}

/**
 * ipath_get_guid - get the GUID from the i2c device
 * @dd: the infinipath device
 *
 * We have the capability to use the ipath_nguid field, and get
 * the guid from the first chip's flash, to use for all of them.
 */
void ipath_get_eeprom_info(struct ipath_devdata *dd)
{
	void *buf;
	struct ipath_flash *ifp;
	__be64 guid;
	int len, eep_stat;
	u8 csum, *bguid;
	int t = dd->ipath_unit;
	struct ipath_devdata *dd0 = ipath_lookup(0);

	if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
		u8 oguid;
		dd->ipath_guid = dd0->ipath_guid;
		bguid = (u8 *) & dd->ipath_guid;

		oguid = bguid[7];
		bguid[7] += t;
		if (oguid > bguid[7]) {
			if (bguid[6] == 0xff) {
				if (bguid[5] == 0xff) {
					ipath_dev_err(
						dd,
						"Can't set %s GUID from "
						"base, wraps to OUI!\n",
						ipath_get_unit_name(t));
					dd->ipath_guid = 0;
					goto bail;
				}
				bguid[5]++;
			}
			bguid[6]++;
		}
		dd->ipath_nguid = 1;

		ipath_dbg("nguid %u, so adding %u to device 0 guid, "
			  "for %llx\n",
			  dd0->ipath_nguid, t,
			  (unsigned long long) be64_to_cpu(dd->ipath_guid));
		goto bail;
	}

	/*
	 * read full flash, not just currently used part, since it may have
	 * been written with a newer definition
	 * */
	len = sizeof(struct ipath_flash);
	buf = vmalloc(len);
	if (!buf) {
		ipath_dev_err(dd, "Couldn't allocate memory to read %u "
			      "bytes from eeprom for GUID\n", len);
		goto bail;
	}

	mutex_lock(&dd->ipath_eep_lock);
	eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len);
	mutex_unlock(&dd->ipath_eep_lock);

	if (eep_stat) {
		ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
		goto done;
	}
	ifp = (struct ipath_flash *)buf;

	csum = flash_csum(ifp, 0);
	if (csum != ifp->if_csum) {
		dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
			 "0x%x, not 0x%x\n", csum, ifp->if_csum);
		goto done;
	}
	if (*(__be64 *) ifp->if_guid == 0ULL ||
	    *(__be64 *) ifp->if_guid == __constant_cpu_to_be64(-1LL)) {
		ipath_dev_err(dd, "Invalid GUID %llx from flash; "
			      "ignoring\n",
			      *(unsigned long long *) ifp->if_guid);
		/* don't allow GUID if all 0 or all 1's */
		goto done;
	}

	/* complain, but allow it */
	if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
		dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
			 "default, probably not correct!\n",
			 *(unsigned long long *) ifp->if_guid);

	bguid = ifp->if_guid;
	if (!bguid[0] && !bguid[1] && !bguid[2]) {
		/* original incorrect GUID format in flash; fix in
		 * core copy, by shifting up 2 octets; don't need to
		 * change top octet, since both it and shifted are
		 * 0.. */
		bguid[1] = bguid[3];
		bguid[2] = bguid[4];
		bguid[3] = bguid[4] = 0;
		guid = *(__be64 *) ifp->if_guid;
		ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
			   "shifting 2 octets\n");
	} else
		guid = *(__be64 *) ifp->if_guid;
	dd->ipath_guid = guid;
	dd->ipath_nguid = ifp->if_numguid;
	/*
	 * Things are slightly complicated by the desire to transparently
	 * support both the Pathscale 10-digit serial number and the QLogic
	 * 13-character version.
	 */
	if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
		&& ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
		/* This board has a Serial-prefix, which is stored
		 * elsewhere for backward-compatibility.
		 */
		char *snp = dd->ipath_serial;
		memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
		snp[sizeof ifp->if_sprefix] = '\0';
		len = strlen(snp);
		snp += len;
		len = (sizeof dd->ipath_serial) - len;
		if (len > sizeof ifp->if_serial) {
			len = sizeof ifp->if_serial;
		}
		memcpy(snp, ifp->if_serial, len);
	} else
		memcpy(dd->ipath_serial, ifp->if_serial,
		       sizeof ifp->if_serial);
	if (!strstr(ifp->if_comment, "Tested successfully"))
		ipath_dev_err(dd, "Board SN %s did not pass functional "
			"test: %s\n", dd->ipath_serial,
			ifp->if_comment);

	ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
		   (unsigned long long) be64_to_cpu(dd->ipath_guid));

	memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT);
	/*
	 * Power-on (actually "active") hours are kept as little-endian value
	 * in EEPROM, but as seconds in a (possibly as small as 24-bit)
	 * atomic_t while running.
	 */
	atomic_set(&dd->ipath_active_time, 0);
	dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8);

done:
	vfree(buf);

bail:;
}

/**
 * ipath_update_eeprom_log - copy active-time and error counters to eeprom
 * @dd: the infinipath device
 *
 * Although the time is kept as seconds in the ipath_devdata struct, it is
 * rounded to hours for re-write, as we have only 16 bits in EEPROM.
 * First-cut code reads whole (expected) struct ipath_flash, modifies,
 * re-writes. Future direction: read/write only what we need, assuming
 * that the EEPROM had to have been "good enough" for driver init, and
 * if not, we aren't making it worse.
 *
 */

int ipath_update_eeprom_log(struct ipath_devdata *dd)
{
	void *buf;
	struct ipath_flash *ifp;
	int len, hi_water;
	uint32_t new_time, new_hrs;
	u8 csum;
	int ret, idx;
	unsigned long flags;

	/* first, check if we actually need to do anything. */
	ret = 0;
	for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
		if (dd->ipath_eep_st_new_errs[idx]) {
			ret = 1;
			break;
		}
	}
	new_time = atomic_read(&dd->ipath_active_time);

	if (ret == 0 && new_time < 3600)
		return 0;

	/*
	 * The quick-check above determined that there is something worthy
	 * of logging, so get current contents and do a more detailed idea.
	 * read full flash, not just currently used part, since it may have
	 * been written with a newer definition
	 */
	len = sizeof(struct ipath_flash);
	buf = vmalloc(len);
	ret = 1;
	if (!buf) {
		ipath_dev_err(dd, "Couldn't allocate memory to read %u "
				"bytes from eeprom for logging\n", len);
		goto bail;
	}

	/* Grab semaphore and read current EEPROM. If we get an
	 * error, let go, but if not, keep it until we finish write.
	 */
	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (ret) {
		ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n");
		goto free_bail;
	}
	ret = ipath_eeprom_internal_read(dd, 0, buf, len);
	if (ret) {
		mutex_unlock(&dd->ipath_eep_lock);
		ipath_dev_err(dd, "Unable read EEPROM for logging\n");
		goto free_bail;
	}
	ifp = (struct ipath_flash *)buf;

	csum = flash_csum(ifp, 0);
	if (csum != ifp->if_csum) {
		mutex_unlock(&dd->ipath_eep_lock);
		ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n",
				csum, ifp->if_csum);
		ret = 1;
		goto free_bail;
	}
	hi_water = 0;
	spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
	for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
		int new_val = dd->ipath_eep_st_new_errs[idx];
		if (new_val) {
			/*
			 * If we have seen any errors, add to EEPROM values
			 * We need to saturate at 0xFF (255) and we also
			 * would need to adjust the checksum if we were
			 * trying to minimize EEPROM traffic
			 * Note that we add to actual current count in EEPROM,
			 * in case it was altered while we were running.
			 */
			new_val += ifp->if_errcntp[idx];
			if (new_val > 0xFF)
				new_val = 0xFF;
			if (ifp->if_errcntp[idx] != new_val) {
				ifp->if_errcntp[idx] = new_val;
				hi_water = offsetof(struct ipath_flash,
						if_errcntp) + idx;
			}
			/*
			 * update our shadow (used to minimize EEPROM
			 * traffic), to match what we are about to write.
			 */
			dd->ipath_eep_st_errs[idx] = new_val;
			dd->ipath_eep_st_new_errs[idx] = 0;
		}
	}
	/*
	 * now update active-time. We would like to round to the nearest hour
	 * but unless atomic_t are sure to be proper signed ints we cannot,
	 * because we need to account for what we "transfer" to EEPROM and
	 * if we log an hour at 31 minutes, then we would need to set
	 * active_time to -29 to accurately count the _next_ hour.
	 */
	if (new_time >= 3600) {
		new_hrs = new_time / 3600;
		atomic_sub((new_hrs * 3600), &dd->ipath_active_time);
		new_hrs += dd->ipath_eep_hrs;
		if (new_hrs > 0xFFFF)
			new_hrs = 0xFFFF;
		dd->ipath_eep_hrs = new_hrs;
		if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) {
			ifp->if_powerhour[0] = new_hrs & 0xFF;
			hi_water = offsetof(struct ipath_flash, if_powerhour);
		}
		if ((new_hrs >> 8) != ifp->if_powerhour[1]) {
			ifp->if_powerhour[1] = new_hrs >> 8;
			hi_water = offsetof(struct ipath_flash, if_powerhour)
					+ 1;
		}
	}
	/*
	 * There is a tiny possibility that we could somehow fail to write
	 * the EEPROM after updating our shadows, but problems from holding
	 * the spinlock too long are a much bigger issue.
	 */
	spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
	if (hi_water) {
		/* we made some change to the data, uopdate cksum and write */
		csum = flash_csum(ifp, 1);
		ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1);
	}
	mutex_unlock(&dd->ipath_eep_lock);
	if (ret)
		ipath_dev_err(dd, "Failed updating EEPROM\n");

free_bail:
	vfree(buf);
bail:
	return ret;

}

/**
 * ipath_inc_eeprom_err - increment one of the four error counters
 * that are logged to EEPROM.
 * @dd: the infinipath device
 * @eidx: 0..3, the counter to increment
 * @incr: how much to add
 *
 * Each counter is 8-bits, and saturates at 255 (0xFF). They
 * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log()
 * is called, but it can only be called in a context that allows sleep.
 * This function can be called even at interrupt level.
 */

void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr)
{
	uint new_val;
	unsigned long flags;

	spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
	new_val = dd->ipath_eep_st_new_errs[eidx] + incr;
	if (new_val > 255)
		new_val = 255;
	dd->ipath_eep_st_new_errs[eidx] = new_val;
	spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
	return;
}

static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum)
{
	int ret;
	struct i2c_chain_desc *icd;

	ret = -ENOENT;

	icd = ipath_i2c_type(dd);
	if (!icd)
		goto bail;

	if (icd->temp_dev == IPATH_NO_DEV) {
		/* tempsense only exists on new, real-I2C boards */
		ret = -ENXIO;
		goto bail;
	}

	if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
		ipath_dbg("Failed tempsense startcmd\n");
		stop_cmd(dd);
		ret = -ENXIO;
		goto bail;
	}
	ret = wr_byte(dd, regnum);
	stop_cmd(dd);
	if (ret) {
		ipath_dev_err(dd, "Failed tempsense WR command %02X\n",
			      regnum);
		ret = -ENXIO;
		goto bail;
	}
	if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) {
		ipath_dbg("Failed tempsense RD startcmd\n");
		stop_cmd(dd);
		ret = -ENXIO;
		goto bail;
	}
	/*
	 * We can only clock out one byte per command, sensibly
	 */
	ret = rd_byte(dd);
	stop_cmd(dd);

bail:
	return ret;
}

#define VALID_TS_RD_REG_MASK 0xBF

/**
 * ipath_tempsense_read - read register of temp sensor via I2C
 * @dd: the infinipath device
 * @regnum: register to read from
 *
 * returns reg contents (0..255) or < 0 for error
 */
int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum)
{
	int ret;

	if (regnum > 7)
		return -EINVAL;

	/* return a bogus value for (the one) register we do not have */
	if (!((1 << regnum) & VALID_TS_RD_REG_MASK))
		return 0;

	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (!ret) {
		ret = ipath_tempsense_internal_read(dd, regnum);
		mutex_unlock(&dd->ipath_eep_lock);
	}

	/*
	 * There are three possibilities here:
	 * ret is actual value (0..255)
	 * ret is -ENXIO or -EINVAL from code in this file
	 * ret is -EINTR from mutex_lock_interruptible.
	 */
	return ret;
}

static int ipath_tempsense_internal_write(struct ipath_devdata *dd,
					  u8 regnum, u8 data)
{
	int ret = -ENOENT;
	struct i2c_chain_desc *icd;

	icd = ipath_i2c_type(dd);
	if (!icd)
		goto bail;

	if (icd->temp_dev == IPATH_NO_DEV) {
		/* tempsense only exists on new, real-I2C boards */
		ret = -ENXIO;
		goto bail;
	}
	if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
		ipath_dbg("Failed tempsense startcmd\n");
		stop_cmd(dd);
		ret = -ENXIO;
		goto bail;
	}
	ret = wr_byte(dd, regnum);
	if (ret) {
		stop_cmd(dd);
		ipath_dev_err(dd, "Failed to write tempsense command %02X\n",
			      regnum);
		ret = -ENXIO;
		goto bail;
	}
	ret = wr_byte(dd, data);
	stop_cmd(dd);
	ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD);
	if (ret) {
		ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n",
			      regnum);
		ret = -ENXIO;
	}

bail:
	return ret;
}

#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD))

/**
 * ipath_tempsense_write - write register of temp sensor via I2C
 * @dd: the infinipath device
 * @regnum: register to write
 * @data: data to write
 *
 * returns 0 for success or < 0 for error
 */
int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data)
{
	int ret;

	if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK))
		return -EINVAL;

	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
	if (!ret) {
		ret = ipath_tempsense_internal_write(dd, regnum, data);
		mutex_unlock(&dd->ipath_eep_lock);
	}

	/*
	 * There are three possibilities here:
	 * ret is 0 for success
	 * ret is -ENXIO or -EINVAL from code in this file
	 * ret is -EINTR from mutex_lock_interruptible.
	 */
	return ret;
}