aboutsummaryrefslogtreecommitdiff
path: root/include/asm-x86/pgtable_32.h
blob: 7b61cb5989b0a0a43231fc19ff5ef2f3c236d31e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#ifndef _I386_PGTABLE_H
#define _I386_PGTABLE_H


/*
 * The Linux memory management assumes a three-level page table setup. On
 * the i386, we use that, but "fold" the mid level into the top-level page
 * table, so that we physically have the same two-level page table as the
 * i386 mmu expects.
 *
 * This file contains the functions and defines necessary to modify and use
 * the i386 page table tree.
 */
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <asm/fixmap.h>
#include <linux/threads.h>
#include <asm/paravirt.h>

#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>

struct mm_struct;
struct vm_area_struct;

extern pgd_t swapper_pg_dir[1024];
extern struct kmem_cache *pmd_cache;
extern spinlock_t pgd_lock;
extern struct page *pgd_list;
void check_pgt_cache(void);

static inline void pgtable_cache_init(void) {}
void paging_init(void);


/*
 * The Linux x86 paging architecture is 'compile-time dual-mode', it
 * implements both the traditional 2-level x86 page tables and the
 * newer 3-level PAE-mode page tables.
 */
#ifdef CONFIG_X86_PAE
# include <asm/pgtable-3level-defs.h>
# define PMD_SIZE	(1UL << PMD_SHIFT)
# define PMD_MASK	(~(PMD_SIZE-1))
#else
# include <asm/pgtable-2level-defs.h>
#endif

#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)

#define TWOLEVEL_PGDIR_SHIFT	22
#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)

/* Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 */
#define VMALLOC_OFFSET	(8*1024*1024)
#define VMALLOC_START	(((unsigned long) high_memory + \
			2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
#ifdef CONFIG_HIGHMEM
# define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE)
#else
# define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
#endif

/*
 * Define this if things work differently on an i386 and an i486:
 * it will (on an i486) warn about kernel memory accesses that are
 * done without a 'access_ok(VERIFY_WRITE,..)'
 */
#undef TEST_ACCESS_OK

/* The boot page tables (all created as a single array) */
extern unsigned long pg0[];

#define pte_present(x)	((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))

/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
#define pmd_none(x)	(!(unsigned long)pmd_val(x))
#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)


#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))

#ifdef CONFIG_X86_PAE
# include <asm/pgtable-3level.h>
#else
# include <asm/pgtable-2level.h>
#endif

/*
 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
 *
 *  dst - pointer to pgd range anwhere on a pgd page
 *  src - ""
 *  count - the number of pgds to copy.
 *
 * dst and src can be on the same page, but the range must not overlap,
 * and must not cross a page boundary.
 */
static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
{
       memcpy(dst, src, count * sizeof(pgd_t));
}

/*
 * Macro to mark a page protection value as "uncacheable".  On processors which do not support
 * it, this is a no-op.
 */
#define pgprot_noncached(prot)	((boot_cpu_data.x86 > 3)					  \
				 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */

#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))

/*
 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
 *
 * this macro returns the index of the entry in the pgd page which would
 * control the given virtual address
 */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_index_k(addr) pgd_index(addr)

/*
 * pgd_offset() returns a (pgd_t *)
 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
 */
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))

/*
 * a shortcut which implies the use of the kernel's pgd, instead
 * of a process's
 */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/*
 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
 *
 * this macro returns the index of the entry in the pmd page which would
 * control the given virtual address
 */
#define pmd_index(address) \
		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))

/*
 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 *
 * this macro returns the index of the entry in the pte page which would
 * control the given virtual address
 */
#define pte_index(address) \
		(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) \
	((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))

#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))

#define pmd_page_vaddr(pmd) \
		((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))

#if defined(CONFIG_HIGHPTE)
#define pte_offset_map(dir, address) \
	((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
#define pte_offset_map_nested(dir, address) \
	((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
#else
#define pte_offset_map(dir, address) \
	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#endif

/* Clear a kernel PTE and flush it from the TLB */
#define kpte_clear_flush(ptep, vaddr)					\
do {									\
	pte_clear(&init_mm, vaddr, ptep);				\
	__flush_tlb_one(vaddr);						\
} while (0)

/*
 * The i386 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 */
#define update_mmu_cache(vma,address,pte) do { } while (0)

void native_pagetable_setup_start(pgd_t *base);
void native_pagetable_setup_done(pgd_t *base);

#ifndef CONFIG_PARAVIRT
static inline void paravirt_pagetable_setup_start(pgd_t *base)
{
	native_pagetable_setup_start(base);
}

static inline void paravirt_pagetable_setup_done(pgd_t *base)
{
	native_pagetable_setup_done(base);
}
#endif	/* !CONFIG_PARAVIRT */

#endif /* !__ASSEMBLY__ */

/*
 * kern_addr_valid() is (1) for FLATMEM and (0) for
 * SPARSEMEM and DISCONTIGMEM
 */
#ifdef CONFIG_FLATMEM
#define kern_addr_valid(addr)	(1)
#else
#define kern_addr_valid(kaddr)	(0)
#endif

#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
		remap_pfn_range(vma, vaddr, pfn, size, prot)

#endif /* _I386_PGTABLE_H */