/* * Copyright (C) 2005 Ben Skeggs. * * Copyright 2008 Corbin Simpson * Adaptation and modification for ATI/AMD Radeon R500 GPU chipsets. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /** * \file * * \author Ben Skeggs * * \author Jerome Glisse * * \author Corbin Simpson * * \todo Depth write, WPOS/FOGC inputs * * \todo FogOption * * \todo Verify results of opcodes for accuracy, I've only checked them in * specific cases. */ #include "glheader.h" #include "macros.h" #include "enums.h" #include "shader/prog_instruction.h" #include "shader/prog_parameter.h" #include "shader/prog_print.h" #include "r300_context.h" #include "r500_fragprog.h" #include "r300_reg.h" #include "r300_state.h" /* * Useful macros and values */ #define ERROR(fmt, args...) do { \ fprintf(stderr, "%s::%s(): " fmt "\n", \ __FILE__, __FUNCTION__, ##args); \ fp->error = GL_TRUE; \ } while(0) #define COMPILE_STATE struct r300_pfs_compile_state *cs = fp->cs #define R500_US_NUM_TEMP_REGS 128 #define R500_US_NUM_CONST_REGS 256 /* "Register" flags */ #define REG_CONSTANT (1 << 8) #define REG_SRC_REL (1 << 9) #define REG_DEST_REL (1 << 7) /* Swizzle tools */ #define R500_SWIZZLE_ZERO 4 #define R500_SWIZZLE_HALF 5 #define R500_SWIZZLE_ONE 6 #define R500_SWIZ_RGB_ZERO ((4 << 0) | (4 << 3) | (4 << 6)) #define R500_SWIZ_RGB_ONE ((6 << 0) | (6 << 3) | (6 << 6)) #define R500_SWIZ_RGB_RGB ((0 << 0) | (1 << 3) | (2 << 6)) #define R500_SWIZ_MOD_NEG 1 #define R500_SWIZ_MOD_ABS 2 #define R500_SWIZ_MOD_NEG_ABS 3 /* Swizzles for inst2 */ #define MAKE_SWIZ_TEX_STRQ(x) (x << 8) #define MAKE_SWIZ_TEX_RGBA(x) (x << 24) /* Swizzles for inst3 */ #define MAKE_SWIZ_RGB_A(x) (x << 2) #define MAKE_SWIZ_RGB_B(x) (x << 15) /* Swizzles for inst4 */ #define MAKE_SWIZ_ALPHA_A(x) (x << 14) #define MAKE_SWIZ_ALPHA_B(x) (x << 21) /* Swizzle for inst5 */ #define MAKE_SWIZ_RGBA_C(x) (x << 14) #define MAKE_SWIZ_ALPHA_C(x) (x << 27) /* Writemasks */ #define R500_WRITEMASK_G 0x2 #define R500_WRITEMASK_A 0x8 #define R500_WRITEMASK_AR 0x9 #define R500_WRITEMASK_AG 0xA #define R500_WRITEMASK_ARG 0xB #define R500_WRITEMASK_AB 0xC #define R500_WRITEMASK_ARGB 0xF /* 1/(2pi), needed for quick modulus in trig insts * Thanks to glisse for pointing out how to do it! */ static const GLfloat RCP_2PI[] = {0.15915494309189535, 0.15915494309189535, 0.15915494309189535, 0.15915494309189535}; static const GLfloat LIT[] = {127.999999, 127.999999, 127.999999, -127.999999}; static void dump_program(struct r500_fragment_program *fp); static inline GLuint make_rgb_swizzle(struct prog_src_register src) { GLuint swiz = 0x0; GLuint temp; /* This could be optimized, but it should be plenty fast already. */ int i; for (i = 0; i < 3; i++) { temp = GET_SWZ(src.Swizzle, i); /* Fix SWIZZLE_ONE */ if (temp == 5) temp++; swiz |= temp << i*3; } if (src.NegateBase) swiz |= (R500_SWIZ_MOD_NEG << 9); return swiz; } static inline GLuint make_alpha_swizzle(struct prog_src_register src) { GLuint swiz = GET_SWZ(src.Swizzle, 3); if (swiz == 5) swiz++; if (src.NegateBase) swiz |= (R500_SWIZ_MOD_NEG << 3); return swiz; } static inline GLuint make_sop_swizzle(struct prog_src_register src) { GLuint swiz = GET_SWZ(src.Swizzle, 0); if (swiz == 5) swiz++; return swiz; } static inline GLuint make_strq_swizzle(struct prog_src_register src) { GLuint swiz = 0x0, temp = 0x0; int i; for (i = 0; i < 4; i++) { temp = GET_SWZ(src.Swizzle, i) & 0x3; swiz |= temp << i*2; } return swiz; } static int get_temp(struct r500_fragment_program *fp, int slot) { COMPILE_STATE; int r = fp->temp_reg_offset + cs->temp_in_use + slot; if (r > R500_US_NUM_TEMP_REGS) { ERROR("Too many temporary registers requested, can't compile!\n"); } return r; } /* Borrowed verbatim from r300_fragprog since it hasn't changed. */ static GLuint emit_const4fv(struct r500_fragment_program *fp, const GLfloat * cp) { GLuint reg = 0x0; int index; for (index = 0; index < fp->const_nr; ++index) { if (fp->constant[index] == cp) break; } if (index >= fp->const_nr) { if (index >= R500_US_NUM_CONST_REGS) { ERROR("Out of hw constants!\n"); return reg; } fp->const_nr++; fp->constant[index] = cp; } reg = index | REG_CONSTANT; return reg; } static GLuint make_src(struct r500_fragment_program *fp, struct prog_src_register src) { COMPILE_STATE; GLuint reg; switch (src.File) { case PROGRAM_TEMPORARY: reg = src.Index + fp->temp_reg_offset; break; case PROGRAM_INPUT: reg = cs->inputs[src.Index].reg; break; case PROGRAM_LOCAL_PARAM: reg = emit_const4fv(fp, fp->mesa_program.Base.LocalParams[src. Index]); break; case PROGRAM_ENV_PARAM: reg = emit_const4fv(fp, fp->ctx->FragmentProgram.Parameters[src. Index]); break; case PROGRAM_STATE_VAR: case PROGRAM_NAMED_PARAM: case PROGRAM_CONSTANT: reg = emit_const4fv(fp, fp->mesa_program.Base.Parameters-> ParameterValues[src.Index]); break; default: ERROR("Can't handle src.File %x\n", src.File); reg = 0x0; break; } return reg; } static GLuint make_dest(struct r500_fragment_program *fp, struct prog_dst_register dest) { GLuint reg; switch (dest.File) { case PROGRAM_TEMPORARY: reg = dest.Index + fp->temp_reg_offset; break; case PROGRAM_OUTPUT: /* Eventually we may need to handle multiple * rendering targets... */ reg = dest.Index; break; default: ERROR("Can't handle dest.File %x\n", dest.File); reg = 0x0; break; } return reg; } static void emit_tex(struct r500_fragment_program *fp, struct prog_instruction *fpi, int dest, int counter) { int hwsrc, hwdest; GLuint mask; mask = fpi->DstReg.WriteMask << 11; hwsrc = make_src(fp, fpi->SrcReg[0]); if (fpi->DstReg.File == PROGRAM_OUTPUT) { hwdest = get_temp(fp, 0); } else { hwdest = dest; } fp->inst[counter].inst0 = R500_INST_TYPE_TEX | mask | R500_INST_TEX_SEM_WAIT; fp->inst[counter].inst1 = R500_TEX_ID(fpi->TexSrcUnit) | R500_TEX_SEM_ACQUIRE | R500_TEX_IGNORE_UNCOVERED; if (fpi->TexSrcTarget == TEXTURE_RECT_INDEX) fp->inst[counter].inst1 |= R500_TEX_UNSCALED; switch (fpi->Opcode) { case OPCODE_KIL: fp->inst[counter].inst1 |= R500_TEX_INST_TEXKILL; break; case OPCODE_TEX: fp->inst[counter].inst1 |= R500_TEX_INST_LD; break; case OPCODE_TXB: fp->inst[counter].inst1 |= R500_TEX_INST_LODBIAS; break; case OPCODE_TXP: fp->inst[counter].inst1 |= R500_TEX_INST_PROJ; break; default: ERROR("emit_tex can't handle opcode %x\n", fpi->Opcode); } fp->inst[counter].inst2 = R500_TEX_SRC_ADDR(hwsrc) | MAKE_SWIZ_TEX_STRQ(make_strq_swizzle(fpi->SrcReg[0])) /* | R500_TEX_SRC_S_SWIZ_R | R500_TEX_SRC_T_SWIZ_G | R500_TEX_SRC_R_SWIZ_B | R500_TEX_SRC_Q_SWIZ_A */ | R500_TEX_DST_ADDR(hwdest) | R500_TEX_DST_R_SWIZ_R | R500_TEX_DST_G_SWIZ_G | R500_TEX_DST_B_SWIZ_B | R500_TEX_DST_A_SWIZ_A; fp->inst[counter].inst3 = 0x0; fp->inst[counter].inst4 = 0x0; fp->inst[counter].inst5 = 0x0; if (fpi->DstReg.File == PROGRAM_OUTPUT) { counter++; fp->inst[counter].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT | (mask << 4); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_OMOD_DISABLE; fp->inst[counter].inst4 = R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_ALPHA_SWIZ_A_A) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(R500_ALPHA_SWIZ_A_A) | R500_ALPHA_OMOD_DISABLE; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); } } static void emit_alu(struct r500_fragment_program *fp, int counter, struct prog_instruction *fpi) { if (fpi->DstReg.File == PROGRAM_OUTPUT) { fp->inst[counter].inst0 = R500_INST_TYPE_OUT; if (fpi->DstReg.Index == FRAG_RESULT_COLR) fp->inst[counter].inst0 |= (fpi->DstReg.WriteMask << 15); if (fpi->DstReg.Index == FRAG_RESULT_DEPR) fp->inst[counter].inst4 = R500_ALPHA_W_OMASK; } else { fp->inst[counter].inst0 = R500_INST_TYPE_ALU /* pixel_mask */ | (fpi->DstReg.WriteMask << 11); } fp->inst[counter].inst0 |= R500_INST_TEX_SEM_WAIT; /* Ideally, we shouldn't have to explicitly clear memory here! */ fp->inst[counter].inst1 = 0x0; fp->inst[counter].inst2 = 0x0; fp->inst[counter].inst3 = 0x0; fp->inst[counter].inst5 = 0x0; } static void emit_mov(struct r500_fragment_program *fp, int counter, struct prog_instruction *fpi, GLuint src_reg, GLuint swizzle, GLuint dest) { /* The r3xx shader uses MAD to implement MOV. We are using CMP, since * it is technically more accurate and recommended by ATI/AMD. */ emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src_reg); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src_reg); /* 0x1FF is 9 bits, size of an RGB swizzle. */ fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A((swizzle & 0x1ff)) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B((swizzle & 0x1ff)) | R500_ALU_RGB_OMOD_DISABLE; fp->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(GET_SWZ(swizzle, 3)) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(GET_SWZ(swizzle, 3)) | R500_ALPHA_OMOD_DISABLE; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); } static void emit_mad(struct r500_fragment_program *fp, int counter, struct prog_instruction *fpi, int one, int two, int three) { /* Note: This code was all Corbin's. Corbin is a rather hackish coder. * If you can make it pretty or fast, please do so! */ emit_alu(fp, counter, fpi); /* Common MAD stuff */ fp->inst[counter].inst4 |= R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(make_dest(fp, fpi->DstReg)); fp->inst[counter].inst5 |= R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(make_dest(fp, fpi->DstReg)); switch (one) { case 0: case 1: case 2: fp->inst[counter].inst1 |= R500_RGB_ADDR0(make_src(fp, fpi->SrcReg[one])); fp->inst[counter].inst2 |= R500_ALPHA_ADDR0(make_src(fp, fpi->SrcReg[one])); fp->inst[counter].inst3 |= R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[one])); fp->inst[counter].inst4 |= R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[one])); break; case R500_SWIZZLE_ZERO: fp->inst[counter].inst3 |= MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ZERO); fp->inst[counter].inst4 |= MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ZERO); break; case R500_SWIZZLE_ONE: fp->inst[counter].inst3 |= MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE); fp->inst[counter].inst4 |= MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE); break; default: ERROR("Bad src index in emit_mad: %d\n", one); break; } switch (two) { case 0: case 1: case 2: fp->inst[counter].inst1 |= R500_RGB_ADDR1(make_src(fp, fpi->SrcReg[two])); fp->inst[counter].inst2 |= R500_ALPHA_ADDR1(make_src(fp, fpi->SrcReg[two])); fp->inst[counter].inst3 |= R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[two])); fp->inst[counter].inst4 |= R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[two])); break; case R500_SWIZZLE_ZERO: fp->inst[counter].inst3 |= MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ZERO); fp->inst[counter].inst4 |= MAKE_SWIZ_ALPHA_B(R500_SWIZZLE_ZERO); break; case R500_SWIZZLE_ONE: fp->inst[counter].inst3 |= MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ONE); fp->inst[counter].inst4 |= MAKE_SWIZ_ALPHA_B(R500_SWIZZLE_ONE); break; default: ERROR("Bad src index in emit_mad: %d\n", two); break; } switch (three) { case 0: case 1: case 2: fp->inst[counter].inst1 |= R500_RGB_ADDR2(make_src(fp, fpi->SrcReg[three])); fp->inst[counter].inst2 |= R500_ALPHA_ADDR2(make_src(fp, fpi->SrcReg[three])); fp->inst[counter].inst5 |= R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[three])) | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[three])); break; case R500_SWIZZLE_ZERO: fp->inst[counter].inst5 |= MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); break; case R500_SWIZZLE_ONE: fp->inst[counter].inst5 |= MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ONE) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ONE); break; default: ERROR("Bad src index in emit_mad: %d\n", three); break; } } static GLboolean parse_program(struct r500_fragment_program *fp) { struct gl_fragment_program *mp = &fp->mesa_program; const struct prog_instruction *inst = mp->Base.Instructions; struct prog_instruction *fpi; GLuint src[3], dest = 0; int temp_swiz, counter = 0; if (!inst || inst[0].Opcode == OPCODE_END) { ERROR("The program is empty!\n"); return GL_FALSE; } for (fpi = mp->Base.Instructions; fpi->Opcode != OPCODE_END; fpi++) { if (fpi->Opcode != OPCODE_KIL) { dest = make_dest(fp, fpi->DstReg); } switch (fpi->Opcode) { case OPCODE_ABS: emit_mov(fp, counter, fpi, make_src(fp, fpi->SrcReg[0]), fpi->SrcReg[0].Swizzle, dest); fp->inst[counter].inst3 |= R500_ALU_RGB_MOD_A_ABS | R500_ALU_RGB_MOD_B_ABS; fp->inst[counter].inst4 |= R500_ALPHA_MOD_A_ABS | R500_ALPHA_MOD_B_ABS; break; case OPCODE_ADD: /* Variation on MAD: 1*src0+src1 */ emit_mad(fp, counter, fpi, R500_SWIZZLE_ONE, 0, 1); break; case OPCODE_CMP: /* This inst's selects need to be swapped as follows: * 0 -> C ; 1 -> B ; 2 -> A */ src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); src[2] = make_src(fp, fpi->SrcReg[2]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[2]) | R500_RGB_ADDR1(src[1]) | R500_RGB_ADDR2(src[0]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[2]) | R500_ALPHA_ADDR1(src[1]) | R500_ALPHA_ADDR2(src[0]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[2])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[2])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[0])); break; case OPCODE_COS: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = emit_const4fv(fp, RCP_2PI); fp->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); fp->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; fp->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB); fp->inst[counter].inst4 = R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(get_temp(fp, 1)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(get_temp(fp, 1)); counter++; emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0; fp->inst[counter].inst4 |= R500_ALPHA_OP_COS | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_DP3: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst4 |= R500_ALPHA_OP_DP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_DP3 | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_DP4: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); /* Based on DP3 */ emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst4 |= R500_ALPHA_OP_DP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_DP4 | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_DPH: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); /* Based on DP3 */ emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst4 |= R500_ALPHA_OP_DP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_DP4 | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_DST: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); /* [1, src0.y*src1.y, src0.z, src1.w] * So basically MUL with lotsa swizzling. */ emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | R500_ALU_RGB_SEL_B_SRC1; /* Select [1, y, z, 1] */ temp_swiz = (make_rgb_swizzle(fpi->SrcReg[0]) & ~0x7) | R500_SWIZZLE_ONE; fp->inst[counter].inst3 |= MAKE_SWIZ_RGB_A(temp_swiz); /* Select [1, y, 1, w] */ temp_swiz = (make_rgb_swizzle(fpi->SrcReg[0]) & ~0x1c7) | R500_SWIZZLE_ONE | (R500_SWIZZLE_ONE << 6); fp->inst[counter].inst3 |= MAKE_SWIZ_RGB_B(temp_swiz); fp->inst[counter].inst4 |= R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(dest) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); break; case OPCODE_EX2: src[0] = make_src(fp, fpi->SrcReg[0]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 |= R500_ALPHA_OP_EX2 | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_FRC: src[0] = make_src(fp, fpi->SrcReg[0]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 |= R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_LG2: src[0] = make_src(fp, fpi->SrcReg[0]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 |= R500_ALPHA_OP_LN2 | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_LIT: /* To be honest, I have no idea how I came up with the following. * All I know is that it's based on the r3xx stuff, and was * concieved with the help of NyQuil. Mmm, MyQuil. */ /* First instruction */ src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = emit_const4fv(fp, LIT); fp->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARG << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ZERO); fp->inst[counter].inst4 = R500_ALPHA_OP_MAX | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAX | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)); counter++; /* Second instruction */ fp->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_AB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)) | R500_ALPHA_ADDR1(src[1]); /* Select [z, z, z, y] */ temp_swiz = 2 | (2 << 3) | (2 << 6); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(temp_swiz) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); fp->inst[counter].inst4 = R500_ALPHA_OP_LN2 | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_G; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MIN | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)); counter++; /* Third instruction */ fp->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_AG << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)); /* Select [x, x, x, z] */ temp_swiz = 0; fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(temp_swiz) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ONE); fp->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 1)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_B | R500_ALPHA_SEL_B_SRC0 | R500_ALPHA_SWIZ_B_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 1)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | R500_ALU_RGBA_A_SWIZ_0; counter++; /* Fourth instruction */ fp->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_AR << 11); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst3 = MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE) | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ONE); fp->inst[counter].inst4 = R500_ALPHA_OP_EX2 | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; /* Fifth instruction */ fp->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_AB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); /* Select [w, w, w] */ temp_swiz = 3 | (3 << 3) | (3 << 6); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ZERO) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(temp_swiz); fp->inst[counter].inst4 |= R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SWIZ_A_1 | R500_ALPHA_SWIZ_B_1; /* Select [-y, -y, -y] */ temp_swiz = 1 | (1 << 3) | (1 << 6); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)) | MAKE_SWIZ_RGBA_C(temp_swiz) | R500_ALU_RGBA_MOD_C_NEG | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; /* Final instruction */ emit_mov(fp, counter, fpi, get_temp(fp, 0), 1672, dest); break; case OPCODE_LRP: /* src0 * src1 + INV(src0) * src2 * 1) MUL src0, src1, temp * 2) PRE 1-src0; MAD srcp, src2, temp */ src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); src[2] = make_src(fp, fpi->SrcReg[2]); fp->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | R500_INST_NOP | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[2]) | R500_RGB_ADDR2(get_temp(fp, 0)) | R500_RGB_SRCP_OP_1_MINUS_RGB0; fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[2]) | R500_ALPHA_ADDR2(get_temp(fp, 0)) | R500_ALPHA_SRCP_OP_1_MINUS_A0; fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRCP | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); fp->inst[counter].inst4 |= R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRCP | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[2])) | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[2])); break; case OPCODE_MAD: emit_mad(fp, counter, fpi, 0, 1, 2); break; case OPCODE_MAX: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst4 |= R500_ALPHA_OP_MAX | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAX | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_MIN: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst4 |= R500_ALPHA_OP_MIN | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MIN | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_MOV: emit_mov(fp, counter, fpi, make_src(fp, fpi->SrcReg[0]), fpi->SrcReg[0].Swizzle, dest); break; case OPCODE_MUL: /* Variation on MAD: src0*src1+0 */ emit_mad(fp, counter, fpi, 0, 1, R500_SWIZZLE_ZERO); break; case OPCODE_POW: /* POW(a,b) = EX2(LN2(a)*b) */ src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); fp->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 = R500_ALPHA_OP_LN2 | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)); counter++; fp->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 1)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_alpha_swizzle(fpi->SrcReg[0])) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[1])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 1)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 |= R500_ALPHA_OP_EX2 | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_RCP: src[0] = make_src(fp, fpi->SrcReg[0]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 |= R500_ALPHA_OP_RCP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_RSQ: src[0] = make_src(fp, fpi->SrcReg[0]); emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 |= R500_ALPHA_OP_RSQ | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_SCS: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = emit_const4fv(fp, RCP_2PI); fp->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); fp->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; fp->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB); fp->inst[counter].inst4 = R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(get_temp(fp, 1)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(get_temp(fp, 1)); counter++; /* Do a cosine, then a sine, masking out the channels we want to protect. */ /* Cosine only goes in R (x) channel. */ fpi->DstReg.WriteMask = 0x1; emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 |= R500_ALPHA_OP_COS | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); counter++; /* Sine only goes in G (y) channel. */ fpi->DstReg.WriteMask = 0x2; emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 |= R500_ALPHA_OP_SIN | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_SGE: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); fp->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR1(src[0]) | R500_RGB_ADDR2(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR1(src[0]) | R500_ALPHA_ADDR2(src[1]); fp->inst[counter].inst3 = /* 1 */ MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[1])) | R500_ALU_RGBA_MOD_C_NEG | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[1])) | R500_ALU_RGBA_ALPHA_MOD_C_NEG; counter++; /* This inst's selects need to be swapped as follows: * 0 -> C ; 1 -> B ; 2 -> A */ emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ZERO); fp->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(R500_SWIZZLE_ZERO); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC0 | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_RGB) | R500_ALU_RGBA_ALPHA_SEL_C_SRC0 | R500_ALU_RGBA_A_SWIZ_A; break; case OPCODE_SIN: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = emit_const4fv(fp, RCP_2PI); fp->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(src[0]) | R500_RGB_ADDR1(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(src[0]) | R500_ALPHA_ADDR1(src[1]); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_RGB); fp->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SEL_B_SRC1 | R500_ALPHA_SWIZ_B_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)) | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_ZERO) | MAKE_SWIZ_ALPHA_C(R500_SWIZZLE_ZERO); counter++; fp->inst[counter].inst0 = R500_INST_TYPE_ALU | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_RGB); fp->inst[counter].inst4 = R500_ALPHA_OP_FRC | R500_ALPHA_ADDRD(get_temp(fp, 1)) | R500_ALPHA_SEL_A_SRC0 | R500_ALPHA_SWIZ_A_A; fp->inst[counter].inst5 = R500_ALU_RGBA_OP_FRC | R500_ALU_RGBA_ADDRD(get_temp(fp, 1)); counter++; emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 1)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0; fp->inst[counter].inst4 |= R500_ALPHA_OP_SIN | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(make_sop_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_SOP | R500_ALU_RGBA_ADDRD(dest); break; case OPCODE_SLT: src[0] = make_src(fp, fpi->SrcReg[0]); src[1] = make_src(fp, fpi->SrcReg[1]); fp->inst[counter].inst0 = R500_INST_TYPE_ALU | R500_INST_TEX_SEM_WAIT | (R500_WRITEMASK_ARGB << 11); fp->inst[counter].inst1 = R500_RGB_ADDR1(src[0]) | R500_RGB_ADDR2(src[1]); fp->inst[counter].inst2 = R500_ALPHA_ADDR1(src[0]) | R500_ALPHA_ADDR2(src[1]); fp->inst[counter].inst3 = /* 1 */ MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ONE) | R500_ALU_RGB_SEL_B_SRC1 | MAKE_SWIZ_RGB_B(make_rgb_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_ADDRD(get_temp(fp, 0)) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ONE) | R500_ALPHA_SEL_B_SRC1 | MAKE_SWIZ_ALPHA_B(make_alpha_swizzle(fpi->SrcReg[0])); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_ADDRD(get_temp(fp, 0)) | R500_ALU_RGBA_SEL_C_SRC2 | MAKE_SWIZ_RGBA_C(make_rgb_swizzle(fpi->SrcReg[1])) | R500_ALU_RGBA_MOD_C_NEG | R500_ALU_RGBA_ALPHA_SEL_C_SRC2 | MAKE_SWIZ_ALPHA_C(make_alpha_swizzle(fpi->SrcReg[1])) | R500_ALU_RGBA_ALPHA_MOD_C_NEG; counter++; /* This inst's selects need to be swapped as follows: * 0 -> C ; 1 -> B ; 2 -> A */ emit_alu(fp, counter, fpi); fp->inst[counter].inst1 = R500_RGB_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst2 = R500_ALPHA_ADDR0(get_temp(fp, 0)); fp->inst[counter].inst3 = R500_ALU_RGB_SEL_A_SRC0 | MAKE_SWIZ_RGB_A(R500_SWIZ_RGB_ZERO) | R500_ALU_RGB_SEL_B_SRC0 | MAKE_SWIZ_RGB_B(R500_SWIZ_RGB_ONE); fp->inst[counter].inst4 |= R500_ALPHA_OP_CMP | R500_ALPHA_ADDRD(dest) | R500_ALPHA_SEL_A_SRC0 | MAKE_SWIZ_ALPHA_A(R500_SWIZZLE_ZERO) | R500_ALPHA_SEL_B_SRC0 | MAKE_SWIZ_ALPHA_B(R500_SWIZZLE_ONE); fp->inst[counter].inst5 = R500_ALU_RGBA_OP_CMP | R500_ALU_RGBA_ADDRD(dest) | R500_ALU_RGBA_SEL_C_SRC0 | MAKE_SWIZ_RGBA_C(R500_SWIZ_RGB_RGB) | R500_ALU_RGBA_ALPHA_SEL_C_SRC0 | R500_ALU_RGBA_A_SWIZ_A; break; case OPCODE_SUB: /* Variation on MAD: 1*src0-src1 */ fpi->SrcReg[1].NegateBase = 0xF; /* NEG_XYZW */ emit_mad(fp, counter, fpi, R500_SWIZZLE_ONE, 0, 1); break; case OPCODE_SWZ: /* TODO: The rarer negation masks! */ emit_mov(fp, counter, fpi, make_src(fp, fpi->SrcReg[0]), fpi->SrcReg[0].Swizzle, dest); break; case OPCODE_KIL: case OPCODE_TEX: case OPCODE_TXB: case OPCODE_TXP: emit_tex(fp, fpi, dest, counter); if (fpi->DstReg.File == PROGRAM_OUTPUT) counter++; break; default: ERROR("unknown fpi->Opcode %s\n", _mesa_opcode_string(fpi->Opcode)); break; } /* Finishing touches */ if (fpi->SaturateMode == SATURATE_ZERO_ONE) { fp->inst[counter].inst0 |= R500_INST_RGB_CLAMP | R500_INST_ALPHA_CLAMP; } counter++; if (fp->error) return GL_FALSE; } /* Finish him! (If it's an ALU/OUT instruction...) */ if ((fp->inst[counter-1].inst0 & 0x3) == 1) { fp->inst[counter-1].inst0 |= R500_INST_LAST; } else { /* We still need to put an output inst, right? */ WARN_ONCE("Final FP instruction is not an OUT.\n"); } fp->cs->nrslots = counter; fp->max_temp_idx++; return GL_TRUE; } static void init_program(r300ContextPtr r300, struct r500_fragment_program *fp) { struct r300_pfs_compile_state *cs = NULL; struct gl_fragment_program *mp = &fp->mesa_program; struct prog_instruction *fpi; GLuint InputsRead = mp->Base.InputsRead; GLuint temps_used = 0; int i, j; /* New compile, reset tracking data */ fp->optimization = driQueryOptioni(&r300->radeon.optionCache, "fp_optimization"); fp->translated = GL_FALSE; fp->error = GL_FALSE; fp->cs = cs = &(R300_CONTEXT(fp->ctx)->state.pfs_compile); fp->cur_node = 0; fp->first_node_has_tex = 0; fp->const_nr = 0; /* Size of pixel stack, plus 1. */ fp->max_temp_idx = 1; /* Temp register offset. */ fp->temp_reg_offset = 0; fp->node[0].alu_end = -1; fp->node[0].tex_end = -1; _mesa_memset(cs, 0, sizeof(*fp->cs)); for (i = 0; i < PFS_MAX_ALU_INST; i++) { for (j = 0; j < 3; j++) { cs->slot[i].vsrc[j] = SRC_CONST; cs->slot[i].ssrc[j] = SRC_CONST; } } /* Work out what temps the Mesa inputs correspond to, this must match * what setup_rs_unit does, which shouldn't be a problem as rs_unit * configures itself based on the fragprog's InputsRead * * NOTE: this depends on get_hw_temp() allocating registers in order, * starting from register 0, so we're just going to do that instead. */ /* Texcoords come first */ for (i = 0; i < fp->ctx->Const.MaxTextureUnits; i++) { if (InputsRead & (FRAG_BIT_TEX0 << i)) { cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0; cs->inputs[FRAG_ATTRIB_TEX0 + i].reg = fp->temp_reg_offset; fp->temp_reg_offset++; } } InputsRead &= ~FRAG_BITS_TEX_ANY; /* fragment position treated as a texcoord */ if (InputsRead & FRAG_BIT_WPOS) { cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0; cs->inputs[FRAG_ATTRIB_WPOS].reg = fp->temp_reg_offset; fp->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_WPOS; /* Then primary colour */ if (InputsRead & FRAG_BIT_COL0) { cs->inputs[FRAG_ATTRIB_COL0].refcount = 0; cs->inputs[FRAG_ATTRIB_COL0].reg = fp->temp_reg_offset; fp->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_COL0; /* Secondary color */ if (InputsRead & FRAG_BIT_COL1) { cs->inputs[FRAG_ATTRIB_COL1].refcount = 0; cs->inputs[FRAG_ATTRIB_COL1].reg = fp->temp_reg_offset; fp->temp_reg_offset++; } InputsRead &= ~FRAG_BIT_COL1; /* Anything else */ if (InputsRead) { WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead); /* force read from hwreg 0 for now */ for (i = 0; i < 32; i++) if (InputsRead & (1 << i)) cs->inputs[i].reg = 0; } if (!mp->Base.Instructions) { ERROR("No instructions found in program, going to go die now.\n"); return; } for (fpi = mp->Base.Instructions; fpi->Opcode != OPCODE_END; fpi++) { for (i = 0; i < 3; i++) { if (fpi->SrcReg[i].File == PROGRAM_TEMPORARY) { if (fpi->SrcReg[i].Index >= temps_used) temps_used = fpi->SrcReg[i].Index + 1; } } } cs->temp_in_use = temps_used + 1; fp->max_temp_idx = fp->temp_reg_offset + cs->temp_in_use; if (RADEON_DEBUG & DEBUG_PIXEL) fprintf(stderr, "FP temp indices: fp->max_temp_idx: %d cs->temp_in_use: %d\n", fp->max_temp_idx, cs->temp_in_use); } static void update_params(struct r500_fragment_program *fp) { struct gl_fragment_program *mp = &fp->mesa_program; /* Ask Mesa nicely to fill in ParameterValues for us */ if (mp->Base.Parameters) _mesa_load_state_parameters(fp->ctx, mp->Base.Parameters); } static void dumb_shader(struct r500_fragment_program *fp) { fp->inst[0].inst0 = R500_INST_TYPE_TEX | R500_INST_TEX_SEM_WAIT | R500_INST_RGB_WMASK_R | R500_INST_RGB_WMASK_G | R500_INST_RGB_WMASK_B | R500_INST_ALPHA_WMASK | R500_INST_RGB_CLAMP | R500_INST_ALPHA_CLAMP; fp->inst[0].inst1 = R500_TEX_ID(0) | R500_TEX_INST_LD | R500_TEX_SEM_ACQUIRE | R500_TEX_IGNORE_UNCOVERED; fp->inst[0].inst2 = R500_TEX_SRC_ADDR(0) | R500_TEX_SRC_S_SWIZ_R | R500_TEX_SRC_T_SWIZ_G | R500_TEX_DST_ADDR(0) | R500_TEX_DST_R_SWIZ_R | R500_TEX_DST_G_SWIZ_G | R500_TEX_DST_B_SWIZ_B | R500_TEX_DST_A_SWIZ_A; fp->inst[0].inst3 = R500_DX_ADDR(0) | R500_DX_S_SWIZ_R | R500_DX_T_SWIZ_R | R500_DX_R_SWIZ_R | R500_DX_Q_SWIZ_R | R500_DY_ADDR(0) | R500_DY_S_SWIZ_R | R500_DY_T_SWIZ_R | R500_DY_R_SWIZ_R | R500_DY_Q_SWIZ_R; fp->inst[0].inst4 = 0x0; fp->inst[0].inst5 = 0x0; fp->inst[1].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT | R500_INST_LAST | R500_INST_RGB_OMASK_R | R500_INST_RGB_OMASK_G | R500_INST_RGB_OMASK_B | R500_INST_ALPHA_OMASK; fp->inst[1].inst1 = R500_RGB_ADDR0(0) | R500_RGB_ADDR1(0) | R500_RGB_ADDR1_CONST | R500_RGB_ADDR2(0) | R500_RGB_ADDR2_CONST | R500_RGB_SRCP_OP_1_MINUS_2RGB0; fp->inst[1].inst2 = R500_ALPHA_ADDR0(0) | R500_ALPHA_ADDR1(0) | R500_ALPHA_ADDR1_CONST | R500_ALPHA_ADDR2(0) | R500_ALPHA_ADDR2_CONST | R500_ALPHA_SRCP_OP_1_MINUS_2A0; fp->inst[1].inst3 = R500_ALU_RGB_SEL_A_SRC0 | R500_ALU_RGB_R_SWIZ_A_R | R500_ALU_RGB_G_SWIZ_A_G | R500_ALU_RGB_B_SWIZ_A_B | R500_ALU_RGB_SEL_B_SRC0 | R500_ALU_RGB_R_SWIZ_B_1 | R500_ALU_RGB_B_SWIZ_B_1 | R500_ALU_RGB_G_SWIZ_B_1; fp->inst[1].inst4 = R500_ALPHA_OP_MAD | R500_ALPHA_SWIZ_A_A | R500_ALPHA_SWIZ_B_1; fp->inst[1].inst5 = R500_ALU_RGBA_OP_MAD | R500_ALU_RGBA_R_SWIZ_0 | R500_ALU_RGBA_G_SWIZ_0 | R500_ALU_RGBA_B_SWIZ_0 | R500_ALU_RGBA_A_SWIZ_0; fp->cs->nrslots = 2; fp->translated = GL_TRUE; } void r500TranslateFragmentShader(r300ContextPtr r300, struct r500_fragment_program *fp) { struct r300_pfs_compile_state *cs = NULL; if (!fp->translated) { init_program(r300, fp); cs = fp->cs; if (parse_program(fp) == GL_FALSE) { ERROR("Huh. Couldn't parse program. There should be additional errors explaining why.\nUsing dumb shader...\n"); dumb_shader(fp); fp->inst_offset = 0; fp->inst_end = cs->nrslots - 1; return; } fp->inst_offset = 0; fp->inst_end = cs->nrslots - 1; fp->translated = GL_TRUE; if (RADEON_DEBUG & DEBUG_PIXEL) { fprintf(stderr, "Mesa program:\n"); fprintf(stderr, "-------------\n"); _mesa_print_program(&fp->mesa_program.Base); fflush(stdout); dump_program(fp); } r300UpdateStateParameters(fp->ctx, _NEW_PROGRAM); } update_params(fp); } static char *toswiz(int swiz_val) { switch(swiz_val) { case 0: return "R"; case 1: return "G"; case 2: return "B"; case 3: return "A"; case 4: return "0"; case 5: return "1/2"; case 6: return "1"; case 7: return "U"; } return NULL; } static char *toop(int op_val) { char *str; switch (op_val) { case 0: str = "MAD"; break; case 1: str = "DP3"; break; case 2: str = "DP4"; break; case 3: str = "D2A"; break; case 4: str = "MIN"; break; case 5: str = "MAX"; break; case 6: str = "Reserved"; break; case 7: str = "CND"; break; case 8: str = "CMP"; break; case 9: str = "FRC"; break; case 10: str = "SOP"; break; case 11: str = "MDH"; break; case 12: str = "MDV"; break; } return str; } static char *to_alpha_op(int op_val) { char *str = NULL; switch (op_val) { case 0: str = "MAD"; break; case 1: str = "DP"; break; case 2: str = "MIN"; break; case 3: str = "MAX"; break; case 4: str = "Reserved"; break; case 5: str = "CND"; break; case 6: str = "CMP"; break; case 7: str = "FRC"; break; case 8: str = "EX2"; break; case 9: str = "LN2"; break; case 10: str = "RCP"; break; case 11: str = "RSQ"; break; case 12: str = "SIN"; break; case 13: str = "COS"; break; case 14: str = "MDH"; break; case 15: str = "MDV"; break; } return str; } static char *to_mask(int val) { char *str = NULL; switch(val) { case 0: str = "NONE"; break; case 1: str = "R"; break; case 2: str = "G"; break; case 3: str = "RG"; break; case 4: str = "B"; break; case 5: str = "RB"; break; case 6: str = "GB"; break; case 7: str = "RGB"; break; case 8: str = "A"; break; case 9: str = "AR"; break; case 10: str = "AG"; break; case 11: str = "ARG"; break; case 12: str = "AB"; break; case 13: str = "ARB"; break; case 14: str = "AGB"; break; case 15: str = "ARGB"; break; } return str; } static char *to_texop(int val) { switch(val) { case 0: return "NOP"; case 1: return "LD"; case 2: return "TEXKILL"; case 3: return "PROJ"; case 4: return "LODBIAS"; case 5: return "LOD"; case 6: return "DXDY"; } return NULL; } static void dump_program(struct r500_fragment_program *fp) { int pc = 0; int n; uint32_t inst; uint32_t inst0; char *str = NULL; for (n = 0; n < fp->inst_end+1; n++) { inst0 = inst = fp->inst[n].inst0; fprintf(stderr,"%d\t0:CMN_INST 0x%08x:", n, inst); switch(inst & 0x3) { case R500_INST_TYPE_ALU: str = "ALU"; break; case R500_INST_TYPE_OUT: str = "OUT"; break; case R500_INST_TYPE_FC: str = "FC"; break; case R500_INST_TYPE_TEX: str = "TEX"; break; }; fprintf(stderr,"%s %s %s %s %s ", str, inst & R500_INST_TEX_SEM_WAIT ? "TEX_WAIT" : "", inst & R500_INST_LAST ? "LAST" : "", inst & R500_INST_NOP ? "NOP" : "", inst & R500_INST_ALU_WAIT ? "ALU WAIT" : ""); fprintf(stderr,"wmask: %s omask: %s\n", to_mask((inst >> 11) & 0xf), to_mask((inst >> 15) & 0xf)); switch(inst0 & 0x3) { case 0: case 1: fprintf(stderr,"\t1:RGB_ADDR 0x%08x:", fp->inst[n].inst1); inst = fp->inst[n].inst1; fprintf(stderr,"Addr0: %d%c, Addr1: %d%c, Addr2: %d%c, srcp:%d\n", inst & 0xff, (inst & (1<<8)) ? 'c' : 't', (inst >> 10) & 0xff, (inst & (1<<18)) ? 'c' : 't', (inst >> 20) & 0xff, (inst & (1<<28)) ? 'c' : 't', (inst >> 30)); fprintf(stderr,"\t2:ALPHA_ADDR 0x%08x:", fp->inst[n].inst2); inst = fp->inst[n].inst2; fprintf(stderr,"Addr0: %d%c, Addr1: %d%c, Addr2: %d%c, srcp:%d\n", inst & 0xff, (inst & (1<<8)) ? 'c' : 't', (inst >> 10) & 0xff, (inst & (1<<18)) ? 'c' : 't', (inst >> 20) & 0xff, (inst & (1<<28)) ? 'c' : 't', (inst >> 30)); fprintf(stderr,"\t3 RGB_INST: 0x%08x:", fp->inst[n].inst3); inst = fp->inst[n].inst3; fprintf(stderr,"rgb_A_src:%d %s/%s/%s %d rgb_B_src:%d %s/%s/%s %d\n", (inst) & 0x3, toswiz((inst >> 2) & 0x7), toswiz((inst >> 5) & 0x7), toswiz((inst >> 8) & 0x7), (inst >> 11) & 0x3, (inst >> 13) & 0x3, toswiz((inst >> 15) & 0x7), toswiz((inst >> 18) & 0x7), toswiz((inst >> 21) & 0x7), (inst >> 24) & 0x3); fprintf(stderr,"\t4 ALPHA_INST:0x%08x:", fp->inst[n].inst4); inst = fp->inst[n].inst4; fprintf(stderr,"%s dest:%d%s alp_A_src:%d %s %d alp_B_src:%d %s %d w:%d\n", to_alpha_op(inst & 0xf), (inst >> 4) & 0x7f, inst & (1<<11) ? "(rel)":"", (inst >> 12) & 0x3, toswiz((inst >> 14) & 0x7), (inst >> 17) & 0x3, (inst >> 19) & 0x3, toswiz((inst >> 21) & 0x7), (inst >> 24) & 0x3, (inst >> 31) & 0x1); fprintf(stderr,"\t5 RGBA_INST: 0x%08x:", fp->inst[n].inst5); inst = fp->inst[n].inst5; fprintf(stderr,"%s dest:%d%s rgb_C_src:%d %s/%s/%s %d alp_C_src:%d %s %d\n", toop(inst & 0xf), (inst >> 4) & 0x7f, inst & (1<<11) ? "(rel)":"", (inst >> 12) & 0x3, toswiz((inst >> 14) & 0x7), toswiz((inst >> 17) & 0x7), toswiz((inst >> 20) & 0x7), (inst >> 23) & 0x3, (inst >> 25) & 0x3, toswiz((inst >> 27) & 0x7), (inst >> 30) & 0x3); break; case 2: break; case 3: inst = fp->inst[n].inst1; fprintf(stderr,"\t1:TEX_INST: 0x%08x: id: %d op:%s, %s, %s %s\n", inst, (inst >> 16) & 0xf, to_texop((inst >> 22) & 0x7), (inst & (1<<25)) ? "ACQ" : "", (inst & (1<<26)) ? "IGNUNC" : "", (inst & (1<<27)) ? "UNSCALED" : "SCALED"); inst = fp->inst[n].inst2; fprintf(stderr,"\t2:TEX_ADDR: 0x%08x: src: %d%s %s/%s/%s/%s dst: %d%s %s/%s/%s/%s\n", inst, inst & 127, inst & (1<<7) ? "(rel)" : "", toswiz((inst >> 8) & 0x3), toswiz((inst >> 10) & 0x3), toswiz((inst >> 12) & 0x3), toswiz((inst >> 14) & 0x3), (inst >> 16) & 127, inst & (1<<23) ? "(rel)" : "", toswiz((inst >> 24) & 0x3), toswiz((inst >> 26) & 0x3), toswiz((inst >> 28) & 0x3), toswiz((inst >> 30) & 0x3)); fprintf(stderr,"\t3:TEX_DXDY: 0x%08x\n", fp->inst[n].inst3); break; } fprintf(stderr,"\n"); } }