aboutsummaryrefslogtreecommitdiff
path: root/src/statistics.c
blob: 5fa463426e302420ce6736c7ddc9621f24244100 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*
 * statistics.c
 *
 * Structure Factor Statistics
 *
 * (c) 2006 Thomas White <taw27@cam.ac.uk>
 *  Synth2D - two-dimensional Fourier synthesis
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <math.h>
#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_min.h>
#include <assert.h>

#include "reflist.h"
#include "statistics.h"

/* Return the least-squares estimate of the optimum scaling factor for intensities */
double stat_scale_intensity(ReflectionList *obs, ReflectionList *calc) {

	unsigned int i;
	double top = 0;
	double bot = 0;

	if ( obs->n_reflections == 0 ) return 0;
	if ( calc->n_reflections == 0 ) return 0;	/* No reflections */
	
	for ( i=1; i<obs->n_reflections; i++ ) {	/* 'hkl' loop */
	
		assert(obs->refs[i].amplitude >= 0);
		assert(calc->refs[i].amplitude >= 0);
		
		top += (obs->refs[i].amplitude*obs->refs[i].amplitude) * (calc->refs[i].amplitude*calc->refs[i].amplitude);
		bot += (calc->refs[i].amplitude*calc->refs[i].amplitude) * (calc->refs[i].amplitude*calc->refs[i].amplitude);
		
	}
	
	return top/bot;

}

/* Return the least-squares estimate of the optimum scaling factor */
double stat_scale(ReflectionList *obs, ReflectionList *calc) {

	unsigned int i;
	double top = 0;
	double bot = 0;

	if ( obs->n_reflections == 0 ) return 0;
	if ( calc->n_reflections == 0 ) return 0;	/* No reflections */
	
	for ( i=1; i<obs->n_reflections; i++ ) {	/* 'hkl' loop */
	
		assert(obs->refs[i].amplitude >= 0);
		assert(calc->refs[i].amplitude >= 0);
		
		top += obs->refs[i].amplitude * calc->refs[i].amplitude;
		bot += calc->refs[i].amplitude * calc->refs[i].amplitude;
		
	}
	
	return top/bot;

}

/* R-factor in terms of diffracted intensities */
double stat_r2(ReflectionList *obs, ReflectionList *calc) {

	unsigned int i;
	double scale;
	double err;
	double den;

	scale = stat_scale_intensity(obs, calc);
	err = 0; den = 0;

	for ( i=1; i<obs->n_reflections; i++ ) {	/* 'hkl' loop */
	
		assert(obs->refs[i].amplitude >= 0);
		assert(calc->refs[i].amplitude >= 0);
		
		err += fabs( (obs->refs[i].amplitude*obs->refs[i].amplitude) - (scale * (calc->refs[i].amplitude*calc->refs[i].amplitude)) );
		den += obs->refs[i].amplitude * obs->refs[i].amplitude;
		
	}
	
	return err/den;

}

/* R-factor in terms of amplitudes of structure factors */
double stat_r1(ReflectionList *obs, ReflectionList *calc) {
	
	unsigned int i;
	double scale;
	double err;
	double den;

	scale = stat_scale(obs, calc);
	err = 0; den = 0;

	for ( i=1; i<obs->n_reflections; i++ ) {	/* 'hkl' loop */
	
		assert(obs->refs[i].amplitude >= 0);
		assert(calc->refs[i].amplitude >= 0);
		
		err += fabs( obs->refs[i].amplitude - (scale * calc->refs[i].amplitude) );
		den += obs->refs[i].amplitude;
		
	}
	
	return err/den;

#if 0
	double scale;
	gsl_function F;
	gsl_min_fminimizer *s;
	int status;
	int iter = 0, max_iter = 100;

	printf("Estimate: Scale = %f, R=%.2f%%\n", opt.scale, opt.r*100);

	opt.r = 999999999;
	opt.scale = 0;
	
	F.function = &stat_calc_r;
	F.params = &pair;
	
	s = gsl_min_fminimizer_alloc(gsl_min_fminimizer_brent);
	gsl_min_fminimizer_set(s, &F, 10, 1, 1000);
	
	do {
	
		double lo, up;
	
		/* Iterate */		
		gsl_min_fminimizer_iterate(s);
		iter++;
		
		/* Get the current estimate */
		scale = gsl_min_fminimizer_x_minimum(s);
		lo = gsl_min_fminimizer_x_lower(s);
		up = gsl_min_fminimizer_x_upper(s);

		/* Check for convergence */
		status = gsl_min_test_interval(lo, up, 0.001, 0.0);
		if (status == GSL_SUCCESS) {
		
			OptimumR opt;
			
			opt.r = stat_calc_r(scale, &pair);
			opt.scale = scale;
			
			printf("Minimum: Scale=%f, R=%.2f%%\n", opt.scale, opt.r*100);
			
			gsl_min_fminimizer_free(s);
			
			return opt;
			
		}
		
	} while (status == GSL_CONTINUE && iter < max_iter);
	
	return opt;
#endif

}

double stat_sigma_f(ReflectionList *reflections) {

	unsigned int i;
	double sigma_f = 0;
	
	if ( reflections->n_reflections == 0 ) return 0;	/* No reflections */
	
	for ( i=1; i<reflections->n_reflections; i++ ) {	/* 'hkl' loop */
		assert(reflections->refs[i].amplitude >= 0);
		sigma_f += reflections->refs[i].amplitude;
	}

	return sigma_f;

}

double stat_stddev(ReflectionList *a) {

	unsigned int i;
	double sigma_f, mean;
	double sigma_dev = 0;
	
	if ( a->n_reflections == 0 ) return 0;	/* No reflections */
	
	sigma_f = stat_sigma_f(a);
	mean = sigma_f / a->n_reflections;
	for ( i=1; i<a->n_reflections; i++ ) {	/* 'hkl' loop */
		sigma_dev += (a->refs[i].amplitude - mean) * (a->refs[i].amplitude - mean);
	}
	
	return sqrt(sigma_dev/a->n_reflections);

}

double stat_maxam(ReflectionList *a) {

	unsigned int i;
	double max_am = 0;
		
	if ( a->n_reflections == 0 ) return 0;	/* No reflections */
	
	for ( i=1; i<a->n_reflections; i++ ) {
		if ( a->refs[i].amplitude > max_am ) max_am = a->refs[i].amplitude;
	}
	
	return max_am;

}