1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
/*
* xgandalf.c
*
* Interface to XGANDALF indexer
*
* Copyright © 2017-2021 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2017-2018 Yaroslav Gevorkov <yaroslav.gevorkov@desy.de>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <libcrystfel-config.h>
#include "xgandalf.h"
#include <stdlib.h>
#include "utils.h"
#include "cell-utils.h"
#include "peaks.h"
#include "index.h"
#ifdef HAVE_XGANDALF
#include "xgandalf/adaptions/crystfel/Lattice.h"
#include "xgandalf/adaptions/crystfel/ExperimentSettings.h"
#include "xgandalf/adaptions/crystfel/IndexerPlain.h"
#endif
/** \file xgandalf.h */
#ifdef HAVE_XGANDALF
struct xgandalf_private_data {
IndexerPlain *indexer;
reciprocalPeaks_1_per_A_t reciprocalPeaks_1_per_A;
IndexingMethod indm;
UnitCell *cellTemplate;
Lattice_t sampleRealLattice_A; //same as cellTemplate
IntegerMatrix *centeringTransformation;
LatticeTransform_t latticeReductionTransform;
};
#define FAKE_DETECTOR_DISTANCE (0.1)
#define FAKE_DETECTOR_RADIUS (0.1)
#define FAKE_BEAM_ENERGY (1)
#define FAKE_DIVERGENCE_ANGLE_DEG (0.05)
#define FAKE_NON_MONOCHROMATICITY (0.005)
#define FAKE_REFLECTION_RADIUS (0.0001)
#define MAX_ASSEMBLED_LATTICES_COUNT (10)
static void reduceCell(UnitCell* cell, LatticeTransform_t* appliedReductionTransform);
static void restoreCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform);
static void makeRightHanded(UnitCell* cell);
int run_xgandalf(struct image *image, void *ipriv)
{
int i;
struct xgandalf_private_data *xgandalf_private_data = (struct xgandalf_private_data*) ipriv;
reciprocalPeaks_1_per_A_t *reciprocalPeaks_1_per_A = &(xgandalf_private_data->reciprocalPeaks_1_per_A);
int peakCountMax = image_feature_count(image->features);
reciprocalPeaks_1_per_A->peakCount = 0;
for ( i = 0; i < peakCountMax && i < MAX_PEAK_COUNT_FOR_INDEXER; i++) {
struct imagefeature *f;
double r[3];
f = image_get_feature(image->features, i);
if (f == NULL) {
continue;
}
detgeom_transform_coords(&image->detgeom->panels[f->pn],
f->fs, f->ss, image->lambda,
0.0, 0.0, r);
reciprocalPeaks_1_per_A->coordinates_x[reciprocalPeaks_1_per_A->peakCount] = r[0] * 1e-10;
reciprocalPeaks_1_per_A->coordinates_y[reciprocalPeaks_1_per_A->peakCount] = r[1] * 1e-10;
reciprocalPeaks_1_per_A->coordinates_z[reciprocalPeaks_1_per_A->peakCount] = r[2] * 1e-10;
reciprocalPeaks_1_per_A->peakCount++;
}
Lattice_t assembledLattices[MAX_ASSEMBLED_LATTICES_COUNT];
int assembledLatticesCount;
IndexerPlain_index(xgandalf_private_data->indexer,
assembledLattices,
&assembledLatticesCount,
MAX_ASSEMBLED_LATTICES_COUNT,
*reciprocalPeaks_1_per_A,
NULL);
if (assembledLatticesCount > 0) { //no multi-lattice at the moment
assembledLatticesCount = 1;
}
int goodLatticesCount = assembledLatticesCount;
for ( i = 0; i < assembledLatticesCount && i < 1; i++) {
reorderLattice(&(xgandalf_private_data->sampleRealLattice_A),
&assembledLattices[i]);
UnitCell *uc;
uc = cell_new();
Lattice_t *l = &assembledLattices[i];
cell_set_cartesian(uc, l->ax * 1e-10, l->ay * 1e-10, l->az * 1e-10,
l->bx * 1e-10, l->by * 1e-10, l->bz * 1e-10,
l->cx * 1e-10, l->cy * 1e-10, l->cz * 1e-10);
makeRightHanded(uc);
if(xgandalf_private_data->cellTemplate != NULL){
restoreCell(uc, &xgandalf_private_data->latticeReductionTransform);
UnitCell *new_cell_trans = cell_transform_intmat(uc, xgandalf_private_data->centeringTransformation);
cell_free(uc);
uc = new_cell_trans;
cell_set_lattice_type(new_cell_trans, cell_get_lattice_type(xgandalf_private_data->cellTemplate));
cell_set_centering(new_cell_trans, cell_get_centering(xgandalf_private_data->cellTemplate));
cell_set_unique_axis(new_cell_trans, cell_get_unique_axis(xgandalf_private_data->cellTemplate));
}
if (validate_cell(uc)) {
STATUS("Problem with returned cell!\n");
}
Crystal *cr = crystal_new();
if (cr == NULL) {
ERROR("Failed to allocate crystal.\n");
return 0;
}
crystal_set_cell(cr, uc);
image_add_crystal(image, cr);
}
return goodLatticesCount;
}
void *xgandalf_prepare(IndexingMethod *indm, UnitCell *cell,
struct xgandalf_options *xgandalf_opts)
{
struct xgandalf_private_data *xgandalf_private_data = cfmalloc(sizeof(struct xgandalf_private_data));
allocReciprocalPeaks(&(xgandalf_private_data->reciprocalPeaks_1_per_A));
xgandalf_private_data->indm = *indm;
xgandalf_private_data->cellTemplate = NULL;
xgandalf_private_data->centeringTransformation = NULL;
float tolerance = xgandalf_opts->tolerance;
samplingPitch_t samplingPitch = xgandalf_opts->sampling_pitch;
gradientDescentIterationsCount_t gradientDescentIterationsCount = xgandalf_opts->grad_desc_iterations;
if (*indm & INDEXING_USE_CELL_PARAMETERS) {
xgandalf_private_data->cellTemplate = cell;
UnitCell* primitiveCell = uncenter_cell(cell, &xgandalf_private_data->centeringTransformation, NULL);
reduceCell(primitiveCell, &xgandalf_private_data->latticeReductionTransform);
double asx, asy, asz, bsx, bsy, bsz, csx, csy, csz;
int ret = cell_get_reciprocal(primitiveCell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
if (ret != 0) {
ERROR("cell_get_reciprocal did not finish properly!");
}
Lattice_t sampleReciprocalLattice_1_per_A = {
.ax = asx * 1e-10, .ay = asy * 1e-10, .az = asz * 1e-10,
.bx = bsx * 1e-10, .by = bsy * 1e-10, .bz = bsz * 1e-10,
.cx = csx * 1e-10, .cy = csy * 1e-10, .cz = csz * 1e-10 };
double ax, ay, az, bx, by, bz, cx, cy, cz;
ret = cell_get_cartesian(primitiveCell, &ax, &ay, &az,
&bx, &by, &bz,
&cx, &cy, &cz);
if (ret != 0) {
ERROR("cell_get_cartesian did not finish properly!");
}
Lattice_t sampleRealLattice_A = {
.ax = ax * 1e10, .ay = ay * 1e10, .az = az * 1e10,
.bx = bx * 1e10, .by = by * 1e10, .bz = bz * 1e10,
.cx = cx * 1e10, .cy = cy * 1e10, .cz = cz * 1e10 };
xgandalf_private_data->sampleRealLattice_A = sampleRealLattice_A;
ExperimentSettings *experimentSettings =
ExperimentSettings_new(FAKE_BEAM_ENERGY,
FAKE_DETECTOR_DISTANCE,
FAKE_DETECTOR_RADIUS,
FAKE_DIVERGENCE_ANGLE_DEG,
FAKE_NON_MONOCHROMATICITY,
sampleReciprocalLattice_1_per_A,
tolerance,
FAKE_REFLECTION_RADIUS);
xgandalf_private_data->indexer = IndexerPlain_new(experimentSettings);
if (xgandalf_opts->no_deviation_from_provided_cell) {
IndexerPlain_setRefineWithExactLattice(xgandalf_private_data->indexer, 1);
}
ExperimentSettings_delete(experimentSettings);
cell_free(primitiveCell);
} else {
Lattice_t sampleRealLattice_A = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
xgandalf_private_data->sampleRealLattice_A = sampleRealLattice_A;
ExperimentSettings *experimentSettings =
ExperimentSettings_new_nolatt(FAKE_BEAM_ENERGY,
FAKE_DETECTOR_DISTANCE,
FAKE_DETECTOR_RADIUS,
FAKE_DIVERGENCE_ANGLE_DEG,
FAKE_NON_MONOCHROMATICITY,
xgandalf_opts->minLatticeVectorLength_A,
xgandalf_opts->maxLatticeVectorLength_A,
FAKE_REFLECTION_RADIUS);
xgandalf_private_data->indexer = IndexerPlain_new(experimentSettings);
ExperimentSettings_delete(experimentSettings);
}
IndexerPlain_setSamplingPitch(xgandalf_private_data->indexer,
samplingPitch);
IndexerPlain_setGradientDescentIterationsCount(xgandalf_private_data->indexer,
gradientDescentIterationsCount);
IndexerPlain_setMaxPeaksToUseForIndexing(xgandalf_private_data->indexer,
xgandalf_opts->maxPeaksForIndexing);
/* Flags that XGANDALF knows about */
*indm &= INDEXING_METHOD_MASK | INDEXING_USE_CELL_PARAMETERS;
return xgandalf_private_data;
}
void xgandalf_cleanup(void *pp)
{
struct xgandalf_private_data *xgandalf_private_data = pp;
freeReciprocalPeaks(xgandalf_private_data->reciprocalPeaks_1_per_A);
IndexerPlain_delete(xgandalf_private_data->indexer);
if(xgandalf_private_data->centeringTransformation != NULL){
intmat_free(xgandalf_private_data->centeringTransformation);
}
cffree(xgandalf_private_data);
}
static void reduceCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform)
{
double ax, ay, az, bx, by, bz, cx, cy, cz;
cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
Lattice_t l = { ax, ay, az, bx, by, bz, cx, cy, cz };
reduceLattice(&l, appliedReductionTransform);
cell_set_cartesian(cell, l.ax, l.ay, l.az,
l.bx, l.by, l.bz,
l.cx, l.cy, l.cz);
makeRightHanded(cell);
}
static void restoreCell(UnitCell *cell, LatticeTransform_t* appliedReductionTransform)
{
double ax, ay, az, bx, by, bz, cx, cy, cz;
cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
Lattice_t l = { ax, ay, az, bx, by, bz, cx, cy, cz };
restoreLattice(&l, appliedReductionTransform);
cell_set_cartesian(cell, l.ax, l.ay, l.az,
l.bx, l.by, l.bz,
l.cx, l.cy, l.cz);
makeRightHanded(cell);
}
static void makeRightHanded(UnitCell *cell)
{
double ax, ay, az, bx, by, bz, cx, cy, cz;
cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
if ( !right_handed(cell) ) {
cell_set_cartesian(cell, -ax, -ay, -az, -bx, -by, -bz, -cx, -cy, -cz);
}
}
const char *xgandalf_probe(UnitCell *cell)
{
return "xgandalf";
}
#else
int run_xgandalf(struct image *image, void *ipriv)
{
ERROR("This copy of CrystFEL was compiled without XGANDALF support.\n");
return 0;
}
void *xgandalf_prepare(IndexingMethod *indm, UnitCell *cell,
struct xgandalf_options *xgandalf_opts)
{
ERROR("This copy of CrystFEL was compiled without XGANDALF support.\n");
ERROR("To use XGANDALF indexing, recompile with XGANDALF.\n");
return NULL;
}
void xgandalf_cleanup(void *pp)
{
}
const char *xgandalf_probe(UnitCell *cell)
{
return NULL;
}
#endif // HAVE_XGANDALF
static void xgandalf_show_help()
{
printf("Parameters for the XGANDALF indexing algorithm:\n"
" --xgandalf-sampling-pitch\n"
" Sampling pitch: 0 (loosest) to 4 (most dense)\n"
" or with secondary Miller indices: 5 (loosest) to\n"
" 7 (most dense). Default: 6\n"
" --xgandalf-grad-desc-iterations\n"
" Gradient descent iterations: 0 (few) to 5 (many)\n"
" Default: 4\n"
" --xgandalf-fast-execution Shortcut to set\n"
" --xgandalf-sampling-pitch=2\n"
" --xgandalf-grad-desc-iterations=3\n"
" --xgandalf-tolerance Relative tolerance of the lattice vectors.\n"
" Default is 0.02\n"
" --xgandalf-no-deviation-from-provided-cell\n"
" Force the fitted cell to have the same lattice\n"
" parameters as the provided one\n"
" --xgandalf-min-lattice-vector-length\n"
" Minimum possible lattice vector length in A.\n"
" Default: 30 A\n"
" --xgandalf-max-lattice-vector-length\n"
" Maximum possible lattice vector length in A.\n"
" Default: 250 A\n"
" --xgandalf-max-peaks\n"
" Maximum number of peaks used for indexing.\n"
" All peaks are used for refinement.\n"
" Default: 250\n"
);
}
int xgandalf_default_options(struct xgandalf_options **opts_ptr)
{
struct xgandalf_options *opts;
opts = cfmalloc(sizeof(struct xgandalf_options));
if ( opts == NULL ) return ENOMEM;
opts->sampling_pitch = 6;
opts->grad_desc_iterations = 4;
opts->tolerance = 0.02;
opts->no_deviation_from_provided_cell = 0;
opts->minLatticeVectorLength_A = 30;
opts->maxLatticeVectorLength_A = 250;
opts->maxPeaksForIndexing = 250;
*opts_ptr = opts;
return 0;
}
static error_t xgandalf_parse_arg(int key, char *arg,
struct argp_state *state)
{
struct xgandalf_options **opts_ptr = state->input;
int r;
switch ( key ) {
case ARGP_KEY_INIT :
r = xgandalf_default_options(opts_ptr);
if ( r ) return r;
break;
case 1 :
xgandalf_show_help();
return EINVAL;
case 2 :
if (sscanf(arg, "%u", &(*opts_ptr)->sampling_pitch) != 1) {
ERROR("Invalid value for --xgandalf-sampling-pitch\n");
return EINVAL;
}
break;
case 3 :
if (sscanf(arg, "%u", &(*opts_ptr)->grad_desc_iterations) != 1) {
ERROR("Invalid value for --xgandalf-grad-desc-iterations\n");
return EINVAL;
}
break;
case 4 :
if (sscanf(arg, "%f", &(*opts_ptr)->tolerance) != 1) {
ERROR("Invalid value for --xgandalf-tolerance\n");
return EINVAL;
}
break;
case 5 :
(*opts_ptr)->no_deviation_from_provided_cell = 1;
break;
case 6 :
if (sscanf(arg, "%f", &(*opts_ptr)->minLatticeVectorLength_A) != 1) {
ERROR("Invalid value for --xgandalf-min-lattice-vector-length\n");
return EINVAL;
}
break;
case 7 :
if (sscanf(arg, "%f", &(*opts_ptr)->maxLatticeVectorLength_A) != 1) {
ERROR("Invalid value for --xgandalf-max-lattice-vector-length\n");
return EINVAL;
}
break;
case 8 :
(*opts_ptr)->sampling_pitch = 2;
(*opts_ptr)->grad_desc_iterations = 3;
break;
case 9 :
if (sscanf(arg, "%i", &(*opts_ptr)->maxPeaksForIndexing) != 1) {
ERROR("Invalid value for --xgandalf-max-peaks\n");
return EINVAL;
}
break;
}
return 0;
}
static struct argp_option xgandalf_options[] = {
{"help-xgandalf", 1, NULL, OPTION_NO_USAGE,
"Show options for XGANDALF indexing algorithm", 99},
{"xgandalf-sampling-pitch", 2, "pitch", OPTION_HIDDEN, NULL},
{"xgandalf-sps", 2, "pitch", OPTION_HIDDEN, NULL},
{"xgandalf-grad-desc-iterations", 3, "n", OPTION_HIDDEN, NULL},
{"xgandalf-gdis", 3, "n", OPTION_HIDDEN, NULL},
{"xgandalf-tolerance", 4, "t", OPTION_HIDDEN, NULL},
{"xgandalf-tol", 4, "t", OPTION_HIDDEN, NULL},
{"xgandalf-no-deviation-from-provided-cell", 5, NULL, OPTION_HIDDEN, NULL},
{"xgandalf-ndfpc", 5, NULL, OPTION_HIDDEN, NULL},
{"xgandalf-min-lattice-vector-length", 6, "len", OPTION_HIDDEN, NULL},
{"xgandalf-min-lvl", 6, "len", OPTION_HIDDEN, NULL},
{"xgandalf-max-lattice-vector-length", 7, "len", OPTION_HIDDEN, NULL},
{"xgandalf-max-lvl", 7, "len", OPTION_HIDDEN, NULL},
{"xgandalf-fast-execution", 8, NULL, OPTION_HIDDEN, NULL},
{"xgandalf-max-peaks", 9, "n", OPTION_HIDDEN, NULL},
{0}
};
struct argp xgandalf_argp = { xgandalf_options, xgandalf_parse_arg,
NULL, NULL, NULL, NULL, NULL };
|