blob: 72aa60b3dc388e8c49664973f8c90445ef496760 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Find mean diffracting resolution
#
# Copyright © 2014-2020 Deutsches Elektronen-Synchrotron DESY,
# a research centre of the Helmholtz Association.
#
# Author:
# 2014-2017 Thomas White <taw@physics.org>
#
import sys
import numpy
import matplotlib.pyplot as plt
if sys.argv[1] == '-':
f = sys.stdin
else:
f = open(sys.argv[1])
a = []
while True:
fline = f.readline()
if not fline:
break
if fline.find("diffraction_resolution_limit") != -1:
res = float(fline.split('= ')[1].split(' ')[0].rstrip("\r\n"))
a.append(res)
continue
f.close()
b = numpy.array(a)
print(" Mean: {:.2} nm^-1 = {:.2} A".format(numpy.mean(b),10.0/numpy.mean(b)))
print(" Best: {:.2} nm^-1 = {:.2} A".format(numpy.max(b),10.0/numpy.max(b)))
print("Worst: {:.2} nm^-1 = {:.2} A".format(numpy.min(b),10.0/numpy.min(b)))
print("Std deviation: {:.2} nm^-1".format(numpy.std(b)))
plt.hist(a,bins=30)
plt.title('Resolution based on indexing results')
plt.xlabel('Resolution / nm^-1')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
|