aboutsummaryrefslogtreecommitdiff
path: root/src/itrans-threshold.c
blob: 71c39a17c8890bbbd625dc487971e07c328a8e79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
 * itrans-threshold.c
 *
 * Threshold and adaptive threshold peak searches
 *
 * (c) 2007 Thomas White <taw27@cam.ac.uk>
 *
 *  dtr - Diffraction Tomography Reconstruction
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdint.h>
#include <assert.h>

#include "control.h"
#include "imagedisplay.h"
#include "reflections.h"

unsigned int itrans_peaksearch_threshold(ImageRecord imagerecord, ControlContext *ctx) {

	int width, height;
	int x, y;
	unsigned int n_reflections = 0;
	uint16_t *image = imagerecord.image;
	double tilt_degrees = imagerecord.tilt;
	uint16_t max = 0;
	
	width = imagerecord.width;
	height = imagerecord.height;
	
	/* Simple Thresholding */
	for ( y=0; y<height; y++ ) {
		for ( x=0; x<width; x++ ) {
			if ( image[x + width*y] > max ) max = image[x + width*y];
		}
	}
	
	for ( y=0; y<height; y++ ) {
		for ( x=0; x<width; x++ ) {
			if ( image[x + width*y] > max/3 ) {
				assert(x<width);
				assert(y<height);
				assert(x>=0);
				assert(y>=0);
				if ( imagerecord.fmode == FORMULATION_PIXELSIZE ) {
					reflection_add_from_reciprocal(ctx,
								(signed)(x-imagerecord.x_centre)*imagerecord.pixel_size,
								(signed)(y-imagerecord.y_centre)*imagerecord.pixel_size,
								tilt_degrees, image[x + width*y]);
				} else {
					reflection_add_from_dp(ctx,
								(signed)(x-imagerecord.x_centre)/imagerecord.resolution,
								(signed)(y-imagerecord.y_centre)/imagerecord.resolution,
								tilt_degrees, image[x + width*y]);
				}
				n_reflections++;
			}
		}
	}
	
	return n_reflections;
	
}

unsigned int itrans_peaksearch_adaptive_threshold(ImageRecord imagerecord, ControlContext *ctx) {

	uint16_t max_val = 0;
	int width, height;
	unsigned int n_reflections = 0;
	uint16_t *image;
	double tilt_degrees = imagerecord.tilt;
	uint16_t max;
	int x, y;
	
	image = imagerecord.image;
	width = imagerecord.width;
	height = imagerecord.height;
	
	max = 0;
	for ( y=0; y<height; y++ ) {
		for ( x=0; x<width; x++ ) {
			if ( image[x + width*y] > max ) max = image[x + width*y];
		}
	}
	
	/* Adaptive Thresholding */
	do {
	
		int max_x = 0;
		int max_y = 0;;
		
		/* Locate the highest point */
		max_val = 0;
		for ( y=0; y<height; y++ ) {
			for ( x=0; x<width; x++ ) {

				if ( image[x + width*y] > max_val ) {
					max_val = image[x + width*y];
					max_x = x;  max_y = y;
				}
			
			}
		}
		
		if ( max_val > max/10 ) {
			assert(max_x<width);
			assert(max_y<height);
			assert(max_x>=0);
			assert(max_y>=0);
			if ( imagerecord.fmode == FORMULATION_PIXELSIZE ) {
				reflection_add_from_reciprocal(ctx,
								(signed)(max_x-imagerecord.x_centre)*imagerecord.pixel_size,
								(signed)(max_y-imagerecord.y_centre)*imagerecord.pixel_size,
								tilt_degrees, image[max_x + width*max_y]);
			} else {
				reflection_add_from_dp(ctx, (signed)(max_x-imagerecord.x_centre)/imagerecord.resolution,
							(signed)(max_y-imagerecord.y_centre)/imagerecord.resolution,
							tilt_degrees, image[max_x + width*max_y]);
			}
			n_reflections++;
			
			/* Remove it and its surroundings */
			for ( y=((max_y-10>0)?max_y-10:0); y<((max_y+10)<height?max_y+10:height); y++ ) {
				for ( x=((max_x-10>0)?max_x-10:0); x<((max_x+10)<width?max_x+10:width); x++ ) {
					image[x + width*y] = 0;
				}
			}
		}
		
	} while ( max_val > 50 );
	
	return n_reflections;

}