diff options
author | merge <null@invalid> | 2009-01-22 13:55:32 +0000 |
---|---|---|
committer | Andy Green <agreen@octopus.localdomain> | 2009-01-22 13:55:32 +0000 |
commit | aa6f5ffbdba45aa8e19e5048648fc6c7b25376d3 (patch) | |
tree | fbb786d0ac6f8a774fd834e9ce951197e60fbffa /Documentation/arm | |
parent | f2d78193eae5dccd3d588d2c8ea0866efc368332 (diff) |
MERGE-via-pending-tracking-hist-MERGE-via-stable-tracking-MERGE-via-mokopatches-tracking-fix-stray-endmenu-patch-1232632040-1232632141
pending-tracking-hist top was MERGE-via-stable-tracking-MERGE-via-mokopatches-tracking-fix-stray-endmenu-patch-1232632040-1232632141 / fdf777a63bcb59e0dfd78bfe2c6242e01f6d4eb9 ... parent commitmessage:
From: merge <null@invalid>
MERGE-via-stable-tracking-hist-MERGE-via-mokopatches-tracking-fix-stray-endmenu-patch-1232632040
stable-tracking-hist top was MERGE-via-mokopatches-tracking-fix-stray-endmenu-patch-1232632040 / 90463bfd2d5a3c8b52f6e6d71024a00e052b0ced ... parent commitmessage:
From: merge <null@invalid>
MERGE-via-mokopatches-tracking-hist-fix-stray-endmenu-patch
mokopatches-tracking-hist top was fix-stray-endmenu-patch / 3630e0be570de8057e7f8d2fe501ed353cdf34e6 ... parent commitmessage:
From: Andy Green <andy@openmoko.com>
fix-stray-endmenu.patch
Signed-off-by: Andy Green <andy@openmoko.com>
Diffstat (limited to 'Documentation/arm')
-rw-r--r-- | Documentation/arm/mem_alignment | 2 | ||||
-rw-r--r-- | Documentation/arm/pxa/mfp.txt | 286 |
2 files changed, 287 insertions, 1 deletions
diff --git a/Documentation/arm/mem_alignment b/Documentation/arm/mem_alignment index d145ccca169..c7c7a114c78 100644 --- a/Documentation/arm/mem_alignment +++ b/Documentation/arm/mem_alignment @@ -24,7 +24,7 @@ real bad - it changes the behaviour of all unaligned instructions in user space, and might cause programs to fail unexpectedly. To change the alignment trap behavior, simply echo a number into -/proc/sys/debug/alignment. The number is made up from various bits: +/proc/cpu/alignment. The number is made up from various bits: bit behavior when set --- ----------------- diff --git a/Documentation/arm/pxa/mfp.txt b/Documentation/arm/pxa/mfp.txt new file mode 100644 index 00000000000..a179e5bc02c --- /dev/null +++ b/Documentation/arm/pxa/mfp.txt @@ -0,0 +1,286 @@ + MFP Configuration for PXA2xx/PXA3xx Processors + + Eric Miao <eric.miao@marvell.com> + +MFP stands for Multi-Function Pin, which is the pin-mux logic on PXA3xx and +later PXA series processors. This document describes the existing MFP API, +and how board/platform driver authors could make use of it. + + Basic Concept +=============== + +Unlike the GPIO alternate function settings on PXA25x and PXA27x, a new MFP +mechanism is introduced from PXA3xx to completely move the pin-mux functions +out of the GPIO controller. In addition to pin-mux configurations, the MFP +also controls the low power state, driving strength, pull-up/down and event +detection of each pin. Below is a diagram of internal connections between +the MFP logic and the remaining SoC peripherals: + + +--------+ + | |--(GPIO19)--+ + | GPIO | | + | |--(GPIO...) | + +--------+ | + | +---------+ + +--------+ +------>| | + | PWM2 |--(PWM_OUT)-------->| MFP | + +--------+ +------>| |-------> to external PAD + | +---->| | + +--------+ | | +-->| | + | SSP2 |---(TXD)----+ | | +---------+ + +--------+ | | + | | + +--------+ | | + | Keypad |--(MKOUT4)----+ | + +--------+ | + | + +--------+ | + | UART2 |---(TXD)--------+ + +--------+ + +NOTE: the external pad is named as MFP_PIN_GPIO19, it doesn't necessarily +mean it's dedicated for GPIO19, only as a hint that internally this pin +can be routed from GPIO19 of the GPIO controller. + +To better understand the change from PXA25x/PXA27x GPIO alternate function +to this new MFP mechanism, here are several key points: + + 1. GPIO controller on PXA3xx is now a dedicated controller, same as other + internal controllers like PWM, SSP and UART, with 128 internal signals + which can be routed to external through one or more MFPs (e.g. GPIO<0> + can be routed through either MFP_PIN_GPIO0 as well as MFP_PIN_GPIO0_2, + see arch/arm/mach-pxa/mach/include/mfp-pxa300.h) + + 2. Alternate function configuration is removed from this GPIO controller, + the remaining functions are pure GPIO-specific, i.e. + + - GPIO signal level control + - GPIO direction control + - GPIO level change detection + + 3. Low power state for each pin is now controlled by MFP, this means the + PGSRx registers on PXA2xx are now useless on PXA3xx + + 4. Wakeup detection is now controlled by MFP, PWER does not control the + wakeup from GPIO(s) any more, depending on the sleeping state, ADxER + (as defined in pxa3xx-regs.h) controls the wakeup from MFP + +NOTE: with such a clear separation of MFP and GPIO, by GPIO<xx> we normally +mean it is a GPIO signal, and by MFP<xxx> or pin xxx, we mean a physical +pad (or ball). + + MFP API Usage +=============== + +For board code writers, here are some guidelines: + +1. include ONE of the following header files in your <board>.c: + + - #include <mach/mfp-pxa25x.h> + - #include <mach/mfp-pxa27x.h> + - #include <mach/mfp-pxa300.h> + - #include <mach/mfp-pxa320.h> + - #include <mach/mfp-pxa930.h> + + NOTE: only one file in your <board>.c, depending on the processors used, + because pin configuration definitions may conflict in these file (i.e. + same name, different meaning and settings on different processors). E.g. + for zylonite platform, which support both PXA300/PXA310 and PXA320, two + separate files are introduced: zylonite_pxa300.c and zylonite_pxa320.c + (in addition to handle MFP configuration differences, they also handle + the other differences between the two combinations). + + NOTE: PXA300 and PXA310 are almost identical in pin configurations (with + PXA310 supporting some additional ones), thus the difference is actually + covered in a single mfp-pxa300.h. + +2. prepare an array for the initial pin configurations, e.g.: + + static unsigned long mainstone_pin_config[] __initdata = { + /* Chip Select */ + GPIO15_nCS_1, + + /* LCD - 16bpp Active TFT */ + GPIOxx_TFT_LCD_16BPP, + GPIO16_PWM0_OUT, /* Backlight */ + + /* MMC */ + GPIO32_MMC_CLK, + GPIO112_MMC_CMD, + GPIO92_MMC_DAT_0, + GPIO109_MMC_DAT_1, + GPIO110_MMC_DAT_2, + GPIO111_MMC_DAT_3, + + ... + + /* GPIO */ + GPIO1_GPIO | WAKEUP_ON_EDGE_BOTH, + }; + + a) once the pin configurations are passed to pxa{2xx,3xx}_mfp_config(), + and written to the actual registers, they are useless and may discard, + adding '__initdata' will help save some additional bytes here. + + b) when there is only one possible pin configurations for a component, + some simplified definitions can be used, e.g. GPIOxx_TFT_LCD_16BPP on + PXA25x and PXA27x processors + + c) if by board design, a pin can be configured to wake up the system + from low power state, it can be 'OR'ed with any of: + + WAKEUP_ON_EDGE_BOTH + WAKEUP_ON_EDGE_RISE + WAKEUP_ON_EDGE_FALL + WAKEUP_ON_LEVEL_HIGH - specifically for enabling of keypad GPIOs, + + to indicate that this pin has the capability of wake-up the system, + and on which edge(s). This, however, doesn't necessarily mean the + pin _will_ wakeup the system, it will only when set_irq_wake() is + invoked with the corresponding GPIO IRQ (GPIO_IRQ(xx) or gpio_to_irq()) + and eventually calls gpio_set_wake() for the actual register setting. + + d) although PXA3xx MFP supports edge detection on each pin, the + internal logic will only wakeup the system when those specific bits + in ADxER registers are set, which can be well mapped to the + corresponding peripheral, thus set_irq_wake() can be called with + the peripheral IRQ to enable the wakeup. + + + MFP on PXA3xx +=============== + +Every external I/O pad on PXA3xx (excluding those for special purpose) has +one MFP logic associated, and is controlled by one MFP register (MFPR). + +The MFPR has the following bit definitions (for PXA300/PXA310/PXA320): + + 31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 + +-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ + | RESERVED |PS|PU|PD| DRIVE |SS|SD|SO|EC|EF|ER|--| AF_SEL | + +-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ + + Bit 3: RESERVED + Bit 4: EDGE_RISE_EN - enable detection of rising edge on this pin + Bit 5: EDGE_FALL_EN - enable detection of falling edge on this pin + Bit 6: EDGE_CLEAR - disable edge detection on this pin + Bit 7: SLEEP_OE_N - enable outputs during low power modes + Bit 8: SLEEP_DATA - output data on the pin during low power modes + Bit 9: SLEEP_SEL - selection control for low power modes signals + Bit 13: PULLDOWN_EN - enable the internal pull-down resistor on this pin + Bit 14: PULLUP_EN - enable the internal pull-up resistor on this pin + Bit 15: PULL_SEL - pull state controlled by selected alternate function + (0) or by PULL{UP,DOWN}_EN bits (1) + + Bit 0 - 2: AF_SEL - alternate function selection, 8 possibilities, from 0-7 + Bit 10-12: DRIVE - drive strength and slew rate + 0b000 - fast 1mA + 0b001 - fast 2mA + 0b002 - fast 3mA + 0b003 - fast 4mA + 0b004 - slow 6mA + 0b005 - fast 6mA + 0b006 - slow 10mA + 0b007 - fast 10mA + + MFP Design for PXA2xx/PXA3xx +============================== + +Due to the difference of pin-mux handling between PXA2xx and PXA3xx, a unified +MFP API is introduced to cover both series of processors. + +The basic idea of this design is to introduce definitions for all possible pin +configurations, these definitions are processor and platform independent, and +the actual API invoked to convert these definitions into register settings and +make them effective there-after. + + Files Involved + -------------- + + - arch/arm/mach-pxa/include/mach/mfp.h + + for + 1. Unified pin definitions - enum constants for all configurable pins + 2. processor-neutral bit definitions for a possible MFP configuration + + - arch/arm/mach-pxa/include/mach/mfp-pxa3xx.h + + for PXA3xx specific MFPR register bit definitions and PXA3xx common pin + configurations + + - arch/arm/mach-pxa/include/mach/mfp-pxa2xx.h + + for PXA2xx specific definitions and PXA25x/PXA27x common pin configurations + + - arch/arm/mach-pxa/include/mach/mfp-pxa25x.h + arch/arm/mach-pxa/include/mach/mfp-pxa27x.h + arch/arm/mach-pxa/include/mach/mfp-pxa300.h + arch/arm/mach-pxa/include/mach/mfp-pxa320.h + arch/arm/mach-pxa/include/mach/mfp-pxa930.h + + for processor specific definitions + + - arch/arm/mach-pxa/mfp-pxa3xx.c + - arch/arm/mach-pxa/mfp-pxa2xx.c + + for implementation of the pin configuration to take effect for the actual + processor. + + Pin Configuration + ----------------- + + The following comments are copied from mfp.h (see the actual source code + for most updated info) + + /* + * a possible MFP configuration is represented by a 32-bit integer + * + * bit 0.. 9 - MFP Pin Number (1024 Pins Maximum) + * bit 10..12 - Alternate Function Selection + * bit 13..15 - Drive Strength + * bit 16..18 - Low Power Mode State + * bit 19..20 - Low Power Mode Edge Detection + * bit 21..22 - Run Mode Pull State + * + * to facilitate the definition, the following macros are provided + * + * MFP_CFG_DEFAULT - default MFP configuration value, with + * alternate function = 0, + * drive strength = fast 3mA (MFP_DS03X) + * low power mode = default + * edge detection = none + * + * MFP_CFG - default MFPR value with alternate function + * MFP_CFG_DRV - default MFPR value with alternate function and + * pin drive strength + * MFP_CFG_LPM - default MFPR value with alternate function and + * low power mode + * MFP_CFG_X - default MFPR value with alternate function, + * pin drive strength and low power mode + */ + + Examples of pin configurations are: + + #define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X, FLOAT) + + which reads GPIO94 can be configured as SSP3_RXD, with alternate function + selection of 1, driving strength of 0b101, and a float state in low power + modes. + + NOTE: this is the default setting of this pin being configured as SSP3_RXD + which can be modified a bit in board code, though it is not recommended to + do so, simply because this default setting is usually carefully encoded, + and is supposed to work in most cases. + + Register Settings + ----------------- + + Register settings on PXA3xx for a pin configuration is actually very + straight-forward, most bits can be converted directly into MFPR value + in a easier way. Two sets of MFPR values are calculated: the run-time + ones and the low power mode ones, to allow different settings. + + The conversion from a generic pin configuration to the actual register + settings on PXA2xx is a bit complicated: many registers are involved, + including GAFRx, GPDRx, PGSRx, PWER, PKWR, PFER and PRER. Please see + mfp-pxa2xx.c for how the conversion is made. |