diff options
Diffstat (limited to 'Documentation/networking/slicecom.txt')
-rw-r--r-- | Documentation/networking/slicecom.txt | 369 |
1 files changed, 0 insertions, 369 deletions
diff --git a/Documentation/networking/slicecom.txt b/Documentation/networking/slicecom.txt deleted file mode 100644 index c82c0cf981b..00000000000 --- a/Documentation/networking/slicecom.txt +++ /dev/null @@ -1,369 +0,0 @@ - -SliceCOM adapter user's documentation - for the 0.51 driver version - -Written by Bartók István <bartoki@itc.hu> - -English translation: Lakatos György <gyuri@itc.hu> -Mon Dec 11 15:28:42 CET 2000 - -Last modified: Wed Aug 29 17:25:37 CEST 2001 - ------------------------------------------------------------------ - -Usage: - -Compiling the kernel: - -Code maturity level options - [*] Prompt for development and/or incomplete code/drivers - -Network device support - Wan interfaces - <M> MultiGate (COMX) synchronous - <M> Support for MUNICH based boards: SliceCOM, PCICOM (NEW) - <M> Support for HDLC and syncPPP... - - -Loading the modules: - -modprobe comx - -modprobe comx-proto-ppp # module for Cisco-HDLC and SyncPPP protocols - -modprobe comx-hw-munich # the module logs information by the kernel - # about the detected boards - - -Configuring the board: - -# This interface will use the Cisco-HDLC line protocol, -# the timeslices assigned are 1,2 (128 KiBit line speed) -# (the first data timeslice in the G.703 frame is no. 1) -# -mkdir /proc/comx/comx0.1/ -echo slicecom >/proc/comx/comx0.1/boardtype -echo hdlc >/proc/comx/comx0.1/protocol -echo 1 2 >/proc/comx/comx0.1/timeslots - - -# This interface uses SyncPPP line protocol, the assigned -# is no. 3 (64 KiBit line speed) -# -mkdir /proc/comx/comx0.2/ -echo slicecom >/proc/comx/comx0.2/boardtype -echo ppp >/proc/comx/comx0.2/protocol -echo 3 >/proc/comx/comx0.2/timeslots - -... - -ifconfig comx0.1 up -ifconfig comx0.2 up - ------------------------------------------------------------------ - -The COMX interfaces use a 10 packet transmit queue by default, however WAN -networks sometimes use bigger values (20 to 100), to utilize the line better -by large traffic (though the line delay increases because of more packets -join the queue). - -# ifconfig comx0 txqueuelen 50 - -This option is only supported by the ifconfig command of the later -distributions, which came with 2.2 kernels, such as RedHat 6.1 or Debian 2.2. - -You can download a newer netbase packet from -http://www.debian.org/~rcw/2.2/netbase/ for Debian 2.1, which has a new -ifconfig. You can get further information about using 2.2 kernel with -Debian 2.1 from http://www.debian.org/releases/stable/running-kernel-2.2 - ------------------------------------------------------------------ - -The SliceCom LEDs: - -red - on, if the interface is unconfigured, or it gets Remote Alarm-s -green - on, if the board finds frame-sync in the received signal - -A bit more detailed: - -red: green: meaning: - -- - no frame-sync, no signal received, or signal SNAFU. -- on "Everything is OK" -on on Reception is ok, but the remote end sends Remote Alarm -on - The interface is unconfigured - ------------------------------------------------------------------ - -A more detailed description of the hardware setting options: - -The general and the protocol layer options described in the 'comx.txt' file -apply to the SliceCom as well, I only summarize the SliceCom hardware specific -settings below. - -The '/proc/comx' configuring interface: - -An interface directory should be created for every timeslot group with -'mkdir', e,g: 'comx0', 'comx1' etc. The timeslots can be assigned here to the -specific interface. The Cisco-like naming convention (serial3:1 - first -timeslot group of the 3rd. board) can't be used here, because these mean IP -aliasing in Linux. - -You can give any meaningful name to keep the configuration clear; -e.g: 'comx0.1', 'comx0.2', 'comx1.1', comx1.2', if you have two boards -with two interfaces each. - -Settings, which apply to the board: - -Neither 'io' nor 'irq' settings required, the driver uses the resources -given by the PCI BIOS. - -comx0/boardnum - board number of the SliceCom in the PC (using the 'natural' - PCI order) as listed in '/proc/pci' or the output of the - 'lspci' command, generally the slots nearer to the motherboard - PCI driver chips have the lower numbers. - - Default: 0 (the counting starts with 0) - -Though the options below are to be set on a single interface, they apply to the -whole board. The restriction, to use them on 'UP' interfaces, is because the -command sequence below could lead to unpredictable results. - - # echo 0 >boardnum - # echo internal >clock_source - # echo 1 >boardnum - -The sequence would set the clock source of board 0. - -These settings will persist after all the interfaces are cleared, but are -cleared when the driver module is unloaded and loaded again. - -comx0/clock_source - source of the transmit clock - Usage: - - # echo line >/proc/comx/comx0/clock_source - # echo internal >/proc/comx/comx0/clock_source - - line - The Tx clock is being decoded if the input data stream, - if no clock seen on the input, then the board will use it's - own clock generator. - - internal - The Tx clock is supplied by the builtin clock generator. - - Default: line - - Normally, the telecommunication company's end device (the HDSL - modem) provides the Tx clock, that's why 'line' is the default. - -comx0/framing - Switching CRC4 off/on - - CRC4: 16 PCM frames (The 32 64Kibit channels are multiplexed into a - PCM frame, nothing to do with HDLC frames) are divided into 2x8 - groups, each group has a 4 bit CRC. - - # echo crc4 >/proc/comx/comx0/framing - # echo no-crc4 >/proc/comx/comx0/framing - - Default is 'crc4', the Hungarian MATAV lines behave like this. - The traffic generally passes if this setting on both ends don't match. - -comx0/linecode - Setting the line coding - - # echo hdb3 >/proc/comx/comx0/linecode - # echo ami >/proc/comx/comx0/linecode - - Default a 'hdb3', MATAV lines use this. - - (AMI coding is rarely used with E1 lines). Frame sync may occur, if - this setting doesn't match the other end's, but CRC4 and data errors - will come, which will result in CRC errors on HDLC/SyncPPP level. - -comx0/reg - direct access to the board's MUNICH (reg) and FALC (lbireg) -comx0/lbireg circuit's registers - - # echo >reg 0x04 0x0 - write 0 to register 4 - # echo >reg 0x104 - write the contents of register 4 with - printk() to syslog - -WARNING! These are only for development purposes, messing with this will - result much trouble! - -comx0/loopback - Places a loop to the board's G.703 signals - - # echo none >/proc/comx/comx0/loopback - # echo local >/proc/comx/comx0/loopback - # echo remote >/proc/comx/comx0/loopback - - none - normal operation, no loop - local - the board receives it's own output - remote - the board sends the received data to the remote side - - Default: none - ------------------------------------------------------------------ - -Interface (channel group in Cisco terms) settings: - -comx0/timeslots - which timeslots belong to the given interface - - Setting: - - # echo '1 5 2 6 7 8' >/proc/comx/comx0/timeslots - - # cat /proc/comx/comx0/timeslots - 1 2 5 6 7 8 - # - - Finding a timeslot: - - # grep ' 4' /proc/comx/comx*/timeslots - /proc/comx/comx0/timeslots:1 3 4 5 6 - # - - The timeslots can be in any order, '1 2 3' is the same as '1 3 2'. - - The interface has to be DOWN during the setting ('ifconfig comx0 - down'), but the other interfaces could operate normally. - - The driver checks if the assigned timeslots are vacant, if not, then - the setting won't be applied. - - The timeslot values are treated as decimal numbers, not to misunderstand - values of 08, 09 form. - ------------------------------------------------------------------ - -Checking the interface and board status: - -- Lines beginning with ' ' (space) belong to the original output, the lines -which begin with '//' are the comments. - - papaya:~$ cat /proc/comx/comx1/status - Interface administrative status is UP, modem status is UP, protocol is UP - Modem status changes: 0, Transmitter status is IDLE, tbusy: 0 - Interface load (input): 978376 / 947808 / 951024 bits/s (5s/5m/15m) - (output): 978376 / 947848 / 951024 bits/s (5s/5m/15m) - Debug flags: none - RX errors: len: 22, overrun: 1, crc: 0, aborts: 0 - buffer overrun: 0, pbuffer overrun: 0 - TX errors: underrun: 0 - Line keepalive (value: 10) status UP [0] - -// The hardware specific part starts here: - Controller status: - No alarms - -// Alarm: -// -// No alarms - Everything OK -// -// LOS - Loss Of Signal - No signal sensed on the input -// AIS - Alarm Indication Signal - The remote side sends '11111111'-s, -// it tells, that there's an error condition, or it's not -// initialised. -// AUXP - Auxiliary Pattern Indication - 01010101.. received. -// LFA - Loss of Frame Alignment - no frame sync received. -// RRA - Receive Remote Alarm - the remote end's OK, but signals error cond. -// LMFA - Loss of CRC4 Multiframe Alignment - no CRC4 multiframe sync. -// NMF - No Multiframe alignment Found after 400 msec - no such alarm using -// no-crc4 or crc4 framing, see below. -// -// Other possible error messages: -// -// Transmit Line Short - the board felt, that it's output is short-circuited, -// so it switched the transmission off. (The board can't definitely tell, -// that it's output is short-circuited.) - -// Chained list of the received packets, for debug purposes: - - Rx ring: - rafutott: 0 - lastcheck: 50845731, jiffies: 51314281 - base: 017b1858 - rx_desc_ptr: 0 - rx_desc_ptr: 017b1858 - hw_curr_ptr: 017b1858 - 06040000 017b1868 017b1898 c016ff00 - 06040000 017b1878 017b1e9c c016ff00 - 46040000 017b1888 017b24a0 c016ff00 - 06040000 017b1858 017b2aa4 c016ff00 - -// All the interfaces using the board: comx1, using the 1,2,...16 timeslots, -// comx2, using timeslot 17, etc. - - Interfaces using this board: (channel-group, interface, timeslots) - 0 comx1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 - 1 comx2: 17 - 2 comx3: 18 - 3 comx4: 19 - 4 comx5: 20 - 5 comx6: 21 - 6 comx7: 22 - 7 comx8: 23 - 8 comx9: 24 - 9 comx10: 25 - 10 comx11: 26 - 11 comx12: 27 - 12 comx13: 28 - 13 comx14: 29 - 14 comx15: 30 - 15 comx16: 31 - -// The number of events handled by the driver during an interrupt cycle: - - Interrupt work histogram: - hist[ 0]: 0 hist[ 1]: 2 hist[ 2]: 18574 hist[ 3]: 79 - hist[ 4]: 14 hist[ 5]: 1 hist[ 6]: 0 hist[ 7]: 1 - hist[ 8]: 0 hist[ 9]: 7 - -// The number of packets to send in the Tx ring, when a new one arrived: - - Tx ring histogram: - hist[ 0]: 2329 hist[ 1]: 0 hist[ 2]: 0 hist[ 3]: 0 - -// The error counters of the E1 interface, according to the RFC2495, -// (similar to the Cisco "show controllers e1" command's output: -// http://www.cisco.com/univercd/cc/td/doc/product/software/ios11/rbook/rinterfc.htm#xtocid25669126) - -Data in current interval (91 seconds elapsed): - 9516 Line Code Violations, 65 Path Code Violations, 2 E-Bit Errors - 0 Slip Secs, 2 Fr Loss Secs, 2 Line Err Secs, 0 Degraded Mins - 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 11 Unavail Secs -Data in Interval 1 (15 minutes): - 0 Line Code Violations, 0 Path Code Violations, 0 E-Bit Errors - 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins - 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs -Data in last 4 intervals (1 hour): - 0 Line Code Violations, 0 Path Code Violations, 0 E-Bit Errors - 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins - 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs -Data in last 96 intervals (24 hours): - 0 Line Code Violations, 0 Path Code Violations, 0 E-Bit Errors - 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins - 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs - ------------------------------------------------------------------ - -Some unique options, (may get into the driver later): -Treat them very carefully, these can cause much trouble! - - modified CRC-4, for improved interworking of CRC-4 and non-CRC-4 - devices: (see page 107 and g706 Annex B) - lbireg[ 0x1b ] |= 0x08 - lbireg[ 0x1c ] |= 0xc0 - - - The NMF - 'No Multiframe alignment Found after 400 msec' alarm - comes into account. - - FALC - the line driver chip. - local loop - I hear my transmission back. - remote loop - I echo the remote transmission back. - - Something useful for finding errors: - - - local loop for timeslot 1 in the FALC chip: - - # echo >lbireg 0x1d 0x21 - - - Switching the loop off: - - # echo >lbireg 0x1d 0x00 |