aboutsummaryrefslogtreecommitdiff
path: root/arch/sh64/mm/cache.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/sh64/mm/cache.c')
-rw-r--r--arch/sh64/mm/cache.c1032
1 files changed, 0 insertions, 1032 deletions
diff --git a/arch/sh64/mm/cache.c b/arch/sh64/mm/cache.c
deleted file mode 100644
index 421487cfff4..00000000000
--- a/arch/sh64/mm/cache.c
+++ /dev/null
@@ -1,1032 +0,0 @@
-/*
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * arch/sh64/mm/cache.c
- *
- * Original version Copyright (C) 2000, 2001 Paolo Alberelli
- * Second version Copyright (C) benedict.gaster@superh.com 2002
- * Third version Copyright Richard.Curnow@superh.com 2003
- * Hacks to third version Copyright (C) 2003 Paul Mundt
- */
-
-/****************************************************************************/
-
-#include <linux/init.h>
-#include <linux/mman.h>
-#include <linux/mm.h>
-#include <linux/threads.h>
-#include <asm/page.h>
-#include <asm/pgtable.h>
-#include <asm/processor.h>
-#include <asm/cache.h>
-#include <asm/tlb.h>
-#include <asm/io.h>
-#include <asm/uaccess.h>
-#include <asm/mmu_context.h>
-#include <asm/pgalloc.h> /* for flush_itlb_range */
-
-#include <linux/proc_fs.h>
-
-/* This function is in entry.S */
-extern unsigned long switch_and_save_asid(unsigned long new_asid);
-
-/* Wired TLB entry for the D-cache */
-static unsigned long long dtlb_cache_slot;
-
-/**
- * sh64_cache_init()
- *
- * This is pretty much just a straightforward clone of the SH
- * detect_cpu_and_cache_system().
- *
- * This function is responsible for setting up all of the cache
- * info dynamically as well as taking care of CPU probing and
- * setting up the relevant subtype data.
- *
- * FIXME: For the time being, we only really support the SH5-101
- * out of the box, and don't support dynamic probing for things
- * like the SH5-103 or even cut2 of the SH5-101. Implement this
- * later!
- */
-int __init sh64_cache_init(void)
-{
- /*
- * First, setup some sane values for the I-cache.
- */
- cpu_data->icache.ways = 4;
- cpu_data->icache.sets = 256;
- cpu_data->icache.linesz = L1_CACHE_BYTES;
-
- /*
- * FIXME: This can probably be cleaned up a bit as well.. for example,
- * do we really need the way shift _and_ the way_step_shift ?? Judging
- * by the existing code, I would guess no.. is there any valid reason
- * why we need to be tracking this around?
- */
- cpu_data->icache.way_shift = 13;
- cpu_data->icache.entry_shift = 5;
- cpu_data->icache.set_shift = 4;
- cpu_data->icache.way_step_shift = 16;
- cpu_data->icache.asid_shift = 2;
-
- /*
- * way offset = cache size / associativity, so just don't factor in
- * associativity in the first place..
- */
- cpu_data->icache.way_ofs = cpu_data->icache.sets *
- cpu_data->icache.linesz;
-
- cpu_data->icache.asid_mask = 0x3fc;
- cpu_data->icache.idx_mask = 0x1fe0;
- cpu_data->icache.epn_mask = 0xffffe000;
- cpu_data->icache.flags = 0;
-
- /*
- * Next, setup some sane values for the D-cache.
- *
- * On the SH5, these are pretty consistent with the I-cache settings,
- * so we just copy over the existing definitions.. these can be fixed
- * up later, especially if we add runtime CPU probing.
- *
- * Though in the meantime it saves us from having to duplicate all of
- * the above definitions..
- */
- cpu_data->dcache = cpu_data->icache;
-
- /*
- * Setup any cache-related flags here
- */
-#if defined(CONFIG_DCACHE_WRITE_THROUGH)
- set_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags));
-#elif defined(CONFIG_DCACHE_WRITE_BACK)
- set_bit(SH_CACHE_MODE_WB, &(cpu_data->dcache.flags));
-#endif
-
- /*
- * We also need to reserve a slot for the D-cache in the DTLB, so we
- * do this now ..
- */
- dtlb_cache_slot = sh64_get_wired_dtlb_entry();
-
- return 0;
-}
-
-#ifdef CONFIG_DCACHE_DISABLED
-#define sh64_dcache_purge_all() do { } while (0)
-#define sh64_dcache_purge_coloured_phy_page(paddr, eaddr) do { } while (0)
-#define sh64_dcache_purge_user_range(mm, start, end) do { } while (0)
-#define sh64_dcache_purge_phy_page(paddr) do { } while (0)
-#define sh64_dcache_purge_virt_page(mm, eaddr) do { } while (0)
-#define sh64_dcache_purge_kernel_range(start, end) do { } while (0)
-#define sh64_dcache_wback_current_user_range(start, end) do { } while (0)
-#endif
-
-/*##########################################################################*/
-
-/* From here onwards, a rewrite of the implementation,
- by Richard.Curnow@superh.com.
-
- The major changes in this compared to the old version are;
- 1. use more selective purging through OCBP instead of using ALLOCO to purge
- by natural replacement. This avoids purging out unrelated cache lines
- that happen to be in the same set.
- 2. exploit the APIs copy_user_page and clear_user_page better
- 3. be more selective about I-cache purging, in particular use invalidate_all
- more sparingly.
-
- */
-
-/*##########################################################################
- SUPPORT FUNCTIONS
- ##########################################################################*/
-
-/****************************************************************************/
-/* The following group of functions deal with mapping and unmapping a temporary
- page into the DTLB slot that have been set aside for our exclusive use. */
-/* In order to accomplish this, we use the generic interface for adding and
- removing a wired slot entry as defined in arch/sh64/mm/tlb.c */
-/****************************************************************************/
-
-static unsigned long slot_own_flags;
-
-static inline void sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid, unsigned long paddr)
-{
- local_irq_save(slot_own_flags);
- sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr);
-}
-
-static inline void sh64_teardown_dtlb_cache_slot(void)
-{
- sh64_teardown_tlb_slot(dtlb_cache_slot);
- local_irq_restore(slot_own_flags);
-}
-
-/****************************************************************************/
-
-#ifndef CONFIG_ICACHE_DISABLED
-
-static void __inline__ sh64_icache_inv_all(void)
-{
- unsigned long long addr, flag, data;
- unsigned int flags;
-
- addr=ICCR0;
- flag=ICCR0_ICI;
- data=0;
-
- /* Make this a critical section for safety (probably not strictly necessary.) */
- local_irq_save(flags);
-
- /* Without %1 it gets unexplicably wrong */
- asm volatile("getcfg %3, 0, %0\n\t"
- "or %0, %2, %0\n\t"
- "putcfg %3, 0, %0\n\t"
- "synci"
- : "=&r" (data)
- : "0" (data), "r" (flag), "r" (addr));
-
- local_irq_restore(flags);
-}
-
-static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end)
-{
- /* Invalidate range of addresses [start,end] from the I-cache, where
- * the addresses lie in the kernel superpage. */
-
- unsigned long long ullend, addr, aligned_start;
-#if (NEFF == 32)
- aligned_start = (unsigned long long)(signed long long)(signed long) start;
-#else
-#error "NEFF != 32"
-#endif
- aligned_start &= L1_CACHE_ALIGN_MASK;
- addr = aligned_start;
-#if (NEFF == 32)
- ullend = (unsigned long long) (signed long long) (signed long) end;
-#else
-#error "NEFF != 32"
-#endif
- while (addr <= ullend) {
- asm __volatile__ ("icbi %0, 0" : : "r" (addr));
- addr += L1_CACHE_BYTES;
- }
-}
-
-static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr)
-{
- /* If we get called, we know that vma->vm_flags contains VM_EXEC.
- Also, eaddr is page-aligned. */
-
- unsigned long long addr, end_addr;
- unsigned long flags = 0;
- unsigned long running_asid, vma_asid;
- addr = eaddr;
- end_addr = addr + PAGE_SIZE;
-
- /* Check whether we can use the current ASID for the I-cache
- invalidation. For example, if we're called via
- access_process_vm->flush_cache_page->here, (e.g. when reading from
- /proc), 'running_asid' will be that of the reader, not of the
- victim.
-
- Also, note the risk that we might get pre-empted between the ASID
- compare and blocking IRQs, and before we regain control, the
- pid->ASID mapping changes. However, the whole cache will get
- invalidated when the mapping is renewed, so the worst that can
- happen is that the loop below ends up invalidating somebody else's
- cache entries.
- */
-
- running_asid = get_asid();
- vma_asid = (vma->vm_mm->context & MMU_CONTEXT_ASID_MASK);
- if (running_asid != vma_asid) {
- local_irq_save(flags);
- switch_and_save_asid(vma_asid);
- }
- while (addr < end_addr) {
- /* Worth unrolling a little */
- asm __volatile__("icbi %0, 0" : : "r" (addr));
- asm __volatile__("icbi %0, 32" : : "r" (addr));
- asm __volatile__("icbi %0, 64" : : "r" (addr));
- asm __volatile__("icbi %0, 96" : : "r" (addr));
- addr += 128;
- }
- if (running_asid != vma_asid) {
- switch_and_save_asid(running_asid);
- local_irq_restore(flags);
- }
-}
-
-/****************************************************************************/
-
-static void sh64_icache_inv_user_page_range(struct mm_struct *mm,
- unsigned long start, unsigned long end)
-{
- /* Used for invalidating big chunks of I-cache, i.e. assume the range
- is whole pages. If 'start' or 'end' is not page aligned, the code
- is conservative and invalidates to the ends of the enclosing pages.
- This is functionally OK, just a performance loss. */
-
- /* See the comments below in sh64_dcache_purge_user_range() regarding
- the choice of algorithm. However, for the I-cache option (2) isn't
- available because there are no physical tags so aliases can't be
- resolved. The icbi instruction has to be used through the user
- mapping. Because icbi is cheaper than ocbp on a cache hit, it
- would be cheaper to use the selective code for a large range than is
- possible with the D-cache. Just assume 64 for now as a working
- figure.
- */
-
- int n_pages;
-
- if (!mm) return;
-
- n_pages = ((end - start) >> PAGE_SHIFT);
- if (n_pages >= 64) {
- sh64_icache_inv_all();
- } else {
- unsigned long aligned_start;
- unsigned long eaddr;
- unsigned long after_last_page_start;
- unsigned long mm_asid, current_asid;
- unsigned long long flags = 0ULL;
-
- mm_asid = mm->context & MMU_CONTEXT_ASID_MASK;
- current_asid = get_asid();
-
- if (mm_asid != current_asid) {
- /* Switch ASID and run the invalidate loop under cli */
- local_irq_save(flags);
- switch_and_save_asid(mm_asid);
- }
-
- aligned_start = start & PAGE_MASK;
- after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK);
-
- while (aligned_start < after_last_page_start) {
- struct vm_area_struct *vma;
- unsigned long vma_end;
- vma = find_vma(mm, aligned_start);
- if (!vma || (aligned_start <= vma->vm_end)) {
- /* Avoid getting stuck in an error condition */
- aligned_start += PAGE_SIZE;
- continue;
- }
- vma_end = vma->vm_end;
- if (vma->vm_flags & VM_EXEC) {
- /* Executable */
- eaddr = aligned_start;
- while (eaddr < vma_end) {
- sh64_icache_inv_user_page(vma, eaddr);
- eaddr += PAGE_SIZE;
- }
- }
- aligned_start = vma->vm_end; /* Skip to start of next region */
- }
- if (mm_asid != current_asid) {
- switch_and_save_asid(current_asid);
- local_irq_restore(flags);
- }
- }
-}
-
-static void sh64_icache_inv_user_small_range(struct mm_struct *mm,
- unsigned long start, int len)
-{
-
- /* Invalidate a small range of user context I-cache, not necessarily
- page (or even cache-line) aligned. */
-
- unsigned long long eaddr = start;
- unsigned long long eaddr_end = start + len;
- unsigned long current_asid, mm_asid;
- unsigned long long flags;
- unsigned long long epage_start;
-
- /* Since this is used inside ptrace, the ASID in the mm context
- typically won't match current_asid. We'll have to switch ASID to do
- this. For safety, and given that the range will be small, do all
- this under cli.
-
- Note, there is a hazard that the ASID in mm->context is no longer
- actually associated with mm, i.e. if the mm->context has started a
- new cycle since mm was last active. However, this is just a
- performance issue: all that happens is that we invalidate lines
- belonging to another mm, so the owning process has to refill them
- when that mm goes live again. mm itself can't have any cache
- entries because there will have been a flush_cache_all when the new
- mm->context cycle started. */
-
- /* Align to start of cache line. Otherwise, suppose len==8 and start
- was at 32N+28 : the last 4 bytes wouldn't get invalidated. */
- eaddr = start & L1_CACHE_ALIGN_MASK;
- eaddr_end = start + len;
-
- local_irq_save(flags);
- mm_asid = mm->context & MMU_CONTEXT_ASID_MASK;
- current_asid = switch_and_save_asid(mm_asid);
-
- epage_start = eaddr & PAGE_MASK;
-
- while (eaddr < eaddr_end)
- {
- asm __volatile__("icbi %0, 0" : : "r" (eaddr));
- eaddr += L1_CACHE_BYTES;
- }
- switch_and_save_asid(current_asid);
- local_irq_restore(flags);
-}
-
-static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end)
-{
- /* The icbi instruction never raises ITLBMISS. i.e. if there's not a
- cache hit on the virtual tag the instruction ends there, without a
- TLB lookup. */
-
- unsigned long long aligned_start;
- unsigned long long ull_end;
- unsigned long long addr;
-
- ull_end = end;
-
- /* Just invalidate over the range using the natural addresses. TLB
- miss handling will be OK (TBC). Since it's for the current process,
- either we're already in the right ASID context, or the ASIDs have
- been recycled since we were last active in which case we might just
- invalidate another processes I-cache entries : no worries, just a
- performance drop for him. */
- aligned_start = start & L1_CACHE_ALIGN_MASK;
- addr = aligned_start;
- while (addr < ull_end) {
- asm __volatile__ ("icbi %0, 0" : : "r" (addr));
- asm __volatile__ ("nop");
- asm __volatile__ ("nop");
- addr += L1_CACHE_BYTES;
- }
-}
-
-#endif /* !CONFIG_ICACHE_DISABLED */
-
-/****************************************************************************/
-
-#ifndef CONFIG_DCACHE_DISABLED
-
-/* Buffer used as the target of alloco instructions to purge data from cache
- sets by natural eviction. -- RPC */
-#define DUMMY_ALLOCO_AREA_SIZE L1_CACHE_SIZE_BYTES + (1024 * 4)
-static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, };
-
-/****************************************************************************/
-
-static void __inline__ sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets)
-{
- /* Purge all ways in a particular block of sets, specified by the base
- set number and number of sets. Can handle wrap-around, if that's
- needed. */
-
- int dummy_buffer_base_set;
- unsigned long long eaddr, eaddr0, eaddr1;
- int j;
- int set_offset;
-
- dummy_buffer_base_set = ((int)&dummy_alloco_area & cpu_data->dcache.idx_mask) >> cpu_data->dcache.entry_shift;
- set_offset = sets_to_purge_base - dummy_buffer_base_set;
-
- for (j=0; j<n_sets; j++, set_offset++) {
- set_offset &= (cpu_data->dcache.sets - 1);
- eaddr0 = (unsigned long long)dummy_alloco_area + (set_offset << cpu_data->dcache.entry_shift);
-
- /* Do one alloco which hits the required set per cache way. For
- write-back mode, this will purge the #ways resident lines. There's
- little point unrolling this loop because the allocos stall more if
- they're too close together. */
- eaddr1 = eaddr0 + cpu_data->dcache.way_ofs * cpu_data->dcache.ways;
- for (eaddr=eaddr0; eaddr<eaddr1; eaddr+=cpu_data->dcache.way_ofs) {
- asm __volatile__ ("alloco %0, 0" : : "r" (eaddr));
- asm __volatile__ ("synco"); /* TAKum03020 */
- }
-
- eaddr1 = eaddr0 + cpu_data->dcache.way_ofs * cpu_data->dcache.ways;
- for (eaddr=eaddr0; eaddr<eaddr1; eaddr+=cpu_data->dcache.way_ofs) {
- /* Load from each address. Required because alloco is a NOP if
- the cache is write-through. Write-through is a config option. */
- if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)))
- *(volatile unsigned char *)(int)eaddr;
- }
- }
-
- /* Don't use OCBI to invalidate the lines. That costs cycles directly.
- If the dummy block is just left resident, it will naturally get
- evicted as required. */
-
- return;
-}
-
-/****************************************************************************/
-
-static void sh64_dcache_purge_all(void)
-{
- /* Purge the entire contents of the dcache. The most efficient way to
- achieve this is to use alloco instructions on a region of unused
- memory equal in size to the cache, thereby causing the current
- contents to be discarded by natural eviction. The alternative,
- namely reading every tag, setting up a mapping for the corresponding
- page and doing an OCBP for the line, would be much more expensive.
- */
-
- sh64_dcache_purge_sets(0, cpu_data->dcache.sets);
-
- return;
-
-}
-
-/****************************************************************************/
-
-static void sh64_dcache_purge_kernel_range(unsigned long start, unsigned long end)
-{
- /* Purge the range of addresses [start,end] from the D-cache. The
- addresses lie in the superpage mapping. There's no harm if we
- overpurge at either end - just a small performance loss. */
- unsigned long long ullend, addr, aligned_start;
-#if (NEFF == 32)
- aligned_start = (unsigned long long)(signed long long)(signed long) start;
-#else
-#error "NEFF != 32"
-#endif
- aligned_start &= L1_CACHE_ALIGN_MASK;
- addr = aligned_start;
-#if (NEFF == 32)
- ullend = (unsigned long long) (signed long long) (signed long) end;
-#else
-#error "NEFF != 32"
-#endif
- while (addr <= ullend) {
- asm __volatile__ ("ocbp %0, 0" : : "r" (addr));
- addr += L1_CACHE_BYTES;
- }
- return;
-}
-
-/* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for
- anything else in the kernel */
-#define MAGIC_PAGE0_START 0xffffffffec000000ULL
-
-static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr, unsigned long eaddr)
-{
- /* Purge the physical page 'paddr' from the cache. It's known that any
- cache lines requiring attention have the same page colour as the the
- address 'eaddr'.
-
- This relies on the fact that the D-cache matches on physical tags
- when no virtual tag matches. So we create an alias for the original
- page and purge through that. (Alternatively, we could have done
- this by switching ASID to match the original mapping and purged
- through that, but that involves ASID switching cost + probably a
- TLBMISS + refill anyway.)
- */
-
- unsigned long long magic_page_start;
- unsigned long long magic_eaddr, magic_eaddr_end;
-
- magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK);
-
- /* As long as the kernel is not pre-emptible, this doesn't need to be
- under cli/sti. */
-
- sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr);
-
- magic_eaddr = magic_page_start;
- magic_eaddr_end = magic_eaddr + PAGE_SIZE;
- while (magic_eaddr < magic_eaddr_end) {
- /* Little point in unrolling this loop - the OCBPs are blocking
- and won't go any quicker (i.e. the loop overhead is parallel
- to part of the OCBP execution.) */
- asm __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr));
- magic_eaddr += L1_CACHE_BYTES;
- }
-
- sh64_teardown_dtlb_cache_slot();
-}
-
-/****************************************************************************/
-
-static void sh64_dcache_purge_phy_page(unsigned long paddr)
-{
- /* Pure a page given its physical start address, by creating a
- temporary 1 page mapping and purging across that. Even if we know
- the virtual address (& vma or mm) of the page, the method here is
- more elegant because it avoids issues of coping with page faults on
- the purge instructions (i.e. no special-case code required in the
- critical path in the TLB miss handling). */
-
- unsigned long long eaddr_start, eaddr, eaddr_end;
- int i;
-
- /* As long as the kernel is not pre-emptible, this doesn't need to be
- under cli/sti. */
-
- eaddr_start = MAGIC_PAGE0_START;
- for (i=0; i < (1 << CACHE_OC_N_SYNBITS); i++) {
- sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr);
-
- eaddr = eaddr_start;
- eaddr_end = eaddr + PAGE_SIZE;
- while (eaddr < eaddr_end) {
- asm __volatile__ ("ocbp %0, 0" : : "r" (eaddr));
- eaddr += L1_CACHE_BYTES;
- }
-
- sh64_teardown_dtlb_cache_slot();
- eaddr_start += PAGE_SIZE;
- }
-}
-
-static void sh64_dcache_purge_user_pages(struct mm_struct *mm,
- unsigned long addr, unsigned long end)
-{
- pgd_t *pgd;
- pmd_t *pmd;
- pte_t *pte;
- pte_t entry;
- spinlock_t *ptl;
- unsigned long paddr;
-
- if (!mm)
- return; /* No way to find physical address of page */
-
- pgd = pgd_offset(mm, addr);
- if (pgd_bad(*pgd))
- return;
-
- pmd = pmd_offset(pgd, addr);
- if (pmd_none(*pmd) || pmd_bad(*pmd))
- return;
-
- pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
- do {
- entry = *pte;
- if (pte_none(entry) || !pte_present(entry))
- continue;
- paddr = pte_val(entry) & PAGE_MASK;
- sh64_dcache_purge_coloured_phy_page(paddr, addr);
- } while (pte++, addr += PAGE_SIZE, addr != end);
- pte_unmap_unlock(pte - 1, ptl);
-}
-/****************************************************************************/
-
-static void sh64_dcache_purge_user_range(struct mm_struct *mm,
- unsigned long start, unsigned long end)
-{
- /* There are at least 5 choices for the implementation of this, with
- pros (+), cons(-), comments(*):
-
- 1. ocbp each line in the range through the original user's ASID
- + no lines spuriously evicted
- - tlbmiss handling (must either handle faults on demand => extra
- special-case code in tlbmiss critical path), or map the page in
- advance (=> flush_tlb_range in advance to avoid multiple hits)
- - ASID switching
- - expensive for large ranges
-
- 2. temporarily map each page in the range to a special effective
- address and ocbp through the temporary mapping; relies on the
- fact that SH-5 OCB* always do TLB lookup and match on ptags (they
- never look at the etags)
- + no spurious evictions
- - expensive for large ranges
- * surely cheaper than (1)
-
- 3. walk all the lines in the cache, check the tags, if a match
- occurs create a page mapping to ocbp the line through
- + no spurious evictions
- - tag inspection overhead
- - (especially for small ranges)
- - potential cost of setting up/tearing down page mapping for
- every line that matches the range
- * cost partly independent of range size
-
- 4. walk all the lines in the cache, check the tags, if a match
- occurs use 4 * alloco to purge the line (+3 other probably
- innocent victims) by natural eviction
- + no tlb mapping overheads
- - spurious evictions
- - tag inspection overhead
-
- 5. implement like flush_cache_all
- + no tag inspection overhead
- - spurious evictions
- - bad for small ranges
-
- (1) can be ruled out as more expensive than (2). (2) appears best
- for small ranges. The choice between (3), (4) and (5) for large
- ranges and the range size for the large/small boundary need
- benchmarking to determine.
-
- For now use approach (2) for small ranges and (5) for large ones.
-
- */
-
- int n_pages;
-
- n_pages = ((end - start) >> PAGE_SHIFT);
- if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) {
-#if 1
- sh64_dcache_purge_all();
-#else
- unsigned long long set, way;
- unsigned long mm_asid = mm->context & MMU_CONTEXT_ASID_MASK;
- for (set = 0; set < cpu_data->dcache.sets; set++) {
- unsigned long long set_base_config_addr = CACHE_OC_ADDRESS_ARRAY + (set << cpu_data->dcache.set_shift);
- for (way = 0; way < cpu_data->dcache.ways; way++) {
- unsigned long long config_addr = set_base_config_addr + (way << cpu_data->dcache.way_step_shift);
- unsigned long long tag0;
- unsigned long line_valid;
-
- asm __volatile__("getcfg %1, 0, %0" : "=r" (tag0) : "r" (config_addr));
- line_valid = tag0 & SH_CACHE_VALID;
- if (line_valid) {
- unsigned long cache_asid;
- unsigned long epn;
-
- cache_asid = (tag0 & cpu_data->dcache.asid_mask) >> cpu_data->dcache.asid_shift;
- /* The next line needs some
- explanation. The virtual tags
- encode bits [31:13] of the virtual
- address, bit [12] of the 'tag' being
- implied by the cache set index. */
- epn = (tag0 & cpu_data->dcache.epn_mask) | ((set & 0x80) << cpu_data->dcache.entry_shift);
-
- if ((cache_asid == mm_asid) && (start <= epn) && (epn < end)) {
- /* TODO : could optimise this
- call by batching multiple
- adjacent sets together. */
- sh64_dcache_purge_sets(set, 1);
- break; /* Don't waste time inspecting other ways for this set */
- }
- }
- }
- }
-#endif
- } else {
- /* Small range, covered by a single page table page */
- start &= PAGE_MASK; /* should already be so */
- end = PAGE_ALIGN(end); /* should already be so */
- sh64_dcache_purge_user_pages(mm, start, end);
- }
- return;
-}
-
-static void sh64_dcache_wback_current_user_range(unsigned long start, unsigned long end)
-{
- unsigned long long aligned_start;
- unsigned long long ull_end;
- unsigned long long addr;
-
- ull_end = end;
-
- /* Just wback over the range using the natural addresses. TLB miss
- handling will be OK (TBC) : the range has just been written to by
- the signal frame setup code, so the PTEs must exist.
-
- Note, if we have CONFIG_PREEMPT and get preempted inside this loop,
- it doesn't matter, even if the pid->ASID mapping changes whilst
- we're away. In that case the cache will have been flushed when the
- mapping was renewed. So the writebacks below will be nugatory (and
- we'll doubtless have to fault the TLB entry/ies in again with the
- new ASID), but it's a rare case.
- */
- aligned_start = start & L1_CACHE_ALIGN_MASK;
- addr = aligned_start;
- while (addr < ull_end) {
- asm __volatile__ ("ocbwb %0, 0" : : "r" (addr));
- addr += L1_CACHE_BYTES;
- }
-}
-
-/****************************************************************************/
-
-/* These *MUST* lie in an area of virtual address space that's otherwise unused. */
-#define UNIQUE_EADDR_START 0xe0000000UL
-#define UNIQUE_EADDR_END 0xe8000000UL
-
-static unsigned long sh64_make_unique_eaddr(unsigned long user_eaddr, unsigned long paddr)
-{
- /* Given a physical address paddr, and a user virtual address
- user_eaddr which will eventually be mapped to it, create a one-off
- kernel-private eaddr mapped to the same paddr. This is used for
- creating special destination pages for copy_user_page and
- clear_user_page */
-
- static unsigned long current_pointer = UNIQUE_EADDR_START;
- unsigned long coloured_pointer;
-
- if (current_pointer == UNIQUE_EADDR_END) {
- sh64_dcache_purge_all();
- current_pointer = UNIQUE_EADDR_START;
- }
-
- coloured_pointer = (current_pointer & ~CACHE_OC_SYN_MASK) | (user_eaddr & CACHE_OC_SYN_MASK);
- sh64_setup_dtlb_cache_slot(coloured_pointer, get_asid(), paddr);
-
- current_pointer += (PAGE_SIZE << CACHE_OC_N_SYNBITS);
-
- return coloured_pointer;
-}
-
-/****************************************************************************/
-
-static void sh64_copy_user_page_coloured(void *to, void *from, unsigned long address)
-{
- void *coloured_to;
-
- /* Discard any existing cache entries of the wrong colour. These are
- present quite often, if the kernel has recently used the page
- internally, then given it up, then it's been allocated to the user.
- */
- sh64_dcache_purge_coloured_phy_page(__pa(to), (unsigned long) to);
-
- coloured_to = (void *) sh64_make_unique_eaddr(address, __pa(to));
- sh64_page_copy(from, coloured_to);
-
- sh64_teardown_dtlb_cache_slot();
-}
-
-static void sh64_clear_user_page_coloured(void *to, unsigned long address)
-{
- void *coloured_to;
-
- /* Discard any existing kernel-originated lines of the wrong colour (as
- above) */
- sh64_dcache_purge_coloured_phy_page(__pa(to), (unsigned long) to);
-
- coloured_to = (void *) sh64_make_unique_eaddr(address, __pa(to));
- sh64_page_clear(coloured_to);
-
- sh64_teardown_dtlb_cache_slot();
-}
-
-#endif /* !CONFIG_DCACHE_DISABLED */
-
-/****************************************************************************/
-
-/*##########################################################################
- EXTERNALLY CALLABLE API.
- ##########################################################################*/
-
-/* These functions are described in Documentation/cachetlb.txt.
- Each one of these functions varies in behaviour depending on whether the
- I-cache and/or D-cache are configured out.
-
- Note that the Linux term 'flush' corresponds to what is termed 'purge' in
- the sh/sh64 jargon for the D-cache, i.e. write back dirty data then
- invalidate the cache lines, and 'invalidate' for the I-cache.
- */
-
-#undef FLUSH_TRACE
-
-void flush_cache_all(void)
-{
- /* Invalidate the entire contents of both caches, after writing back to
- memory any dirty data from the D-cache. */
- sh64_dcache_purge_all();
- sh64_icache_inv_all();
-}
-
-/****************************************************************************/
-
-void flush_cache_mm(struct mm_struct *mm)
-{
- /* Invalidate an entire user-address space from both caches, after
- writing back dirty data (e.g. for shared mmap etc). */
-
- /* This could be coded selectively by inspecting all the tags then
- doing 4*alloco on any set containing a match (as for
- flush_cache_range), but fork/exit/execve (where this is called from)
- are expensive anyway. */
-
- /* Have to do a purge here, despite the comments re I-cache below.
- There could be odd-coloured dirty data associated with the mm still
- in the cache - if this gets written out through natural eviction
- after the kernel has reused the page there will be chaos.
- */
-
- sh64_dcache_purge_all();
-
- /* The mm being torn down won't ever be active again, so any Icache
- lines tagged with its ASID won't be visible for the rest of the
- lifetime of this ASID cycle. Before the ASID gets reused, there
- will be a flush_cache_all. Hence we don't need to touch the
- I-cache. This is similar to the lack of action needed in
- flush_tlb_mm - see fault.c. */
-}
-
-/****************************************************************************/
-
-void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end)
-{
- struct mm_struct *mm = vma->vm_mm;
-
- /* Invalidate (from both caches) the range [start,end) of virtual
- addresses from the user address space specified by mm, after writing
- back any dirty data.
-
- Note, 'end' is 1 byte beyond the end of the range to flush. */
-
- sh64_dcache_purge_user_range(mm, start, end);
- sh64_icache_inv_user_page_range(mm, start, end);
-}
-
-/****************************************************************************/
-
-void flush_cache_page(struct vm_area_struct *vma, unsigned long eaddr, unsigned long pfn)
-{
- /* Invalidate any entries in either cache for the vma within the user
- address space vma->vm_mm for the page starting at virtual address
- 'eaddr'. This seems to be used primarily in breaking COW. Note,
- the I-cache must be searched too in case the page in question is
- both writable and being executed from (e.g. stack trampolines.)
-
- Note, this is called with pte lock held.
- */
-
- sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT);
-
- if (vma->vm_flags & VM_EXEC) {
- sh64_icache_inv_user_page(vma, eaddr);
- }
-}
-
-/****************************************************************************/
-
-#ifndef CONFIG_DCACHE_DISABLED
-
-void copy_user_page(void *to, void *from, unsigned long address, struct page *page)
-{
- /* 'from' and 'to' are kernel virtual addresses (within the superpage
- mapping of the physical RAM). 'address' is the user virtual address
- where the copy 'to' will be mapped after. This allows a custom
- mapping to be used to ensure that the new copy is placed in the
- right cache sets for the user to see it without having to bounce it
- out via memory. Note however : the call to flush_page_to_ram in
- (generic)/mm/memory.c:(break_cow) undoes all this good work in that one
- very important case!
-
- TBD : can we guarantee that on every call, any cache entries for
- 'from' are in the same colour sets as 'address' also? i.e. is this
- always used just to deal with COW? (I suspect not). */
-
- /* There are two possibilities here for when the page 'from' was last accessed:
- * by the kernel : this is OK, no purge required.
- * by the/a user (e.g. for break_COW) : need to purge.
-
- If the potential user mapping at 'address' is the same colour as
- 'from' there is no need to purge any cache lines from the 'from'
- page mapped into cache sets of colour 'address'. (The copy will be
- accessing the page through 'from').
- */
-
- if (((address ^ (unsigned long) from) & CACHE_OC_SYN_MASK) != 0) {
- sh64_dcache_purge_coloured_phy_page(__pa(from), address);
- }
-
- if (((address ^ (unsigned long) to) & CACHE_OC_SYN_MASK) == 0) {
- /* No synonym problem on destination */
- sh64_page_copy(from, to);
- } else {
- sh64_copy_user_page_coloured(to, from, address);
- }
-
- /* Note, don't need to flush 'from' page from the cache again - it's
- done anyway by the generic code */
-}
-
-void clear_user_page(void *to, unsigned long address, struct page *page)
-{
- /* 'to' is a kernel virtual address (within the superpage
- mapping of the physical RAM). 'address' is the user virtual address
- where the 'to' page will be mapped after. This allows a custom
- mapping to be used to ensure that the new copy is placed in the
- right cache sets for the user to see it without having to bounce it
- out via memory.
- */
-
- if (((address ^ (unsigned long) to) & CACHE_OC_SYN_MASK) == 0) {
- /* No synonym problem on destination */
- sh64_page_clear(to);
- } else {
- sh64_clear_user_page_coloured(to, address);
- }
-}
-
-#endif /* !CONFIG_DCACHE_DISABLED */
-
-/****************************************************************************/
-
-void flush_dcache_page(struct page *page)
-{
- sh64_dcache_purge_phy_page(page_to_phys(page));
- wmb();
-}
-
-/****************************************************************************/
-
-void flush_icache_range(unsigned long start, unsigned long end)
-{
- /* Flush the range [start,end] of kernel virtual adddress space from
- the I-cache. The corresponding range must be purged from the
- D-cache also because the SH-5 doesn't have cache snooping between
- the caches. The addresses will be visible through the superpage
- mapping, therefore it's guaranteed that there no cache entries for
- the range in cache sets of the wrong colour.
-
- Primarily used for cohering the I-cache after a module has
- been loaded. */
-
- /* We also make sure to purge the same range from the D-cache since
- flush_page_to_ram() won't be doing this for us! */
-
- sh64_dcache_purge_kernel_range(start, end);
- wmb();
- sh64_icache_inv_kernel_range(start, end);
-}
-
-/****************************************************************************/
-
-void flush_icache_user_range(struct vm_area_struct *vma,
- struct page *page, unsigned long addr, int len)
-{
- /* Flush the range of user (defined by vma->vm_mm) address space
- starting at 'addr' for 'len' bytes from the cache. The range does
- not straddle a page boundary, the unique physical page containing
- the range is 'page'. This seems to be used mainly for invalidating
- an address range following a poke into the program text through the
- ptrace() call from another process (e.g. for BRK instruction
- insertion). */
-
- sh64_dcache_purge_coloured_phy_page(page_to_phys(page), addr);
- mb();
-
- if (vma->vm_flags & VM_EXEC) {
- sh64_icache_inv_user_small_range(vma->vm_mm, addr, len);
- }
-}
-
-/*##########################################################################
- ARCH/SH64 PRIVATE CALLABLE API.
- ##########################################################################*/
-
-void flush_cache_sigtramp(unsigned long start, unsigned long end)
-{
- /* For the address range [start,end), write back the data from the
- D-cache and invalidate the corresponding region of the I-cache for
- the current process. Used to flush signal trampolines on the stack
- to make them executable. */
-
- sh64_dcache_wback_current_user_range(start, end);
- wmb();
- sh64_icache_inv_current_user_range(start, end);
-}
-