aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/wimax/i2400m/i2400m.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wimax/i2400m/i2400m.h')
-rw-r--r--drivers/net/wimax/i2400m/i2400m.h209
1 files changed, 141 insertions, 68 deletions
diff --git a/drivers/net/wimax/i2400m/i2400m.h b/drivers/net/wimax/i2400m/i2400m.h
index 60330f313f2..04df9bbe340 100644
--- a/drivers/net/wimax/i2400m/i2400m.h
+++ b/drivers/net/wimax/i2400m/i2400m.h
@@ -117,16 +117,30 @@
* well as i2400m->wimax_dev.net_dev and call i2400m_setup(). The
* i2400m driver will only register with the WiMAX and network stacks;
* the only access done to the device is to read the MAC address so we
- * can register a network device. This calls i2400m_dev_start() to
- * load firmware, setup communication with the device and configure it
- * for operation.
+ * can register a network device.
*
- * At this point, control and data communications are possible.
+ * The high-level call flow is:
+ *
+ * bus_probe()
+ * i2400m_setup()
+ * i2400m->bus_setup()
+ * boot rom initialization / read mac addr
+ * network / WiMAX stacks registration
+ * i2400m_dev_start()
+ * i2400m->bus_dev_start()
+ * i2400m_dev_initialize()
*
- * On disconnect/driver unload, the bus-specific disconnect function
- * calls i2400m_release() to undo i2400m_setup(). i2400m_dev_stop()
- * shuts the firmware down and releases resources uses to communicate
- * with the device.
+ * The reverse applies for a disconnect() call:
+ *
+ * bus_disconnect()
+ * i2400m_release()
+ * i2400m_dev_stop()
+ * i2400m_dev_shutdown()
+ * i2400m->bus_dev_stop()
+ * network / WiMAX stack unregistration
+ * i2400m->bus_release()
+ *
+ * At this point, control and data communications are possible.
*
* While the device is up, it might reset. The bus-specific driver has
* to catch that situation and call i2400m_dev_reset_handle() to deal
@@ -148,9 +162,6 @@
/* Misc constants */
enum {
- /* Firmware uploading */
- I2400M_BOOT_RETRIES = 3,
- I3200_BOOT_RETRIES = 3,
/* Size of the Boot Mode Command buffer */
I2400M_BM_CMD_BUF_SIZE = 16 * 1024,
I2400M_BM_ACK_BUF_SIZE = 256,
@@ -197,6 +208,7 @@ enum i2400m_reset_type {
struct i2400m_reset_ctx;
struct i2400m_roq;
+struct i2400m_barker_db;
/**
* struct i2400m - descriptor for an Intel 2400m
@@ -204,27 +216,50 @@ struct i2400m_roq;
* Members marked with [fill] must be filled out/initialized before
* calling i2400m_setup().
*
+ * Note the @bus_setup/@bus_release, @bus_dev_start/@bus_dev_release
+ * call pairs are very much doing almost the same, and depending on
+ * the underlying bus, some stuff has to be put in one or the
+ * other. The idea of setup/release is that they setup the minimal
+ * amount needed for loading firmware, where us dev_start/stop setup
+ * the rest needed to do full data/control traffic.
+ *
* @bus_tx_block_size: [fill] SDIO imposes a 256 block size, USB 16,
* so we have a tx_blk_size variable that the bus layer sets to
* tell the engine how much of that we need.
*
* @bus_pl_size_max: [fill] Maximum payload size.
*
- * @bus_dev_start: [fill] Function called by the bus-generic code
- * [i2400m_dev_start()] to setup the bus-specific communications
- * to the the device. See LIFE CYCLE above.
+ * @bus_setup: [optional fill] Function called by the bus-generic code
+ * [i2400m_setup()] to setup the basic bus-specific communications
+ * to the the device needed to load firmware. See LIFE CYCLE above.
*
* NOTE: Doesn't need to upload the firmware, as that is taken
* care of by the bus-generic code.
*
- * @bus_dev_stop: [fill] Function called by the bus-generic code
- * [i2400m_dev_stop()] to shutdown the bus-specific communications
- * to the the device. See LIFE CYCLE above.
+ * @bus_release: [optional fill] Function called by the bus-generic
+ * code [i2400m_release()] to shutdown the basic bus-specific
+ * communications to the the device needed to load firmware. See
+ * LIFE CYCLE above.
*
* This function does not need to reset the device, just tear down
* all the host resources created to handle communication with
* the device.
*
+ * @bus_dev_start: [optional fill] Function called by the bus-generic
+ * code [i2400m_dev_start()] to do things needed to start the
+ * device. See LIFE CYCLE above.
+ *
+ * NOTE: Doesn't need to upload the firmware, as that is taken
+ * care of by the bus-generic code.
+ *
+ * @bus_dev_stop: [optional fill] Function called by the bus-generic
+ * code [i2400m_dev_stop()] to do things needed for stopping the
+ * device. See LIFE CYCLE above.
+ *
+ * This function does not need to reset the device, just tear down
+ * all the host resources created to handle communication with
+ * the device.
+ *
* @bus_tx_kick: [fill] Function called by the bus-generic code to let
* the bus-specific code know that there is data available in the
* TX FIFO for transmission to the device.
@@ -246,6 +281,9 @@ struct i2400m_roq;
* process, so it cannot rely on common infrastructure being laid
* out.
*
+ * IMPORTANT: don't call reset on RT_BUS with i2400m->init_mutex
+ * held, as the .pre/.post reset handlers will deadlock.
+ *
* @bus_bm_retries: [fill] How many times shall a firmware upload /
* device initialization be retried? Different models of the same
* device might need different values, hence it is set by the
@@ -297,6 +335,27 @@ struct i2400m_roq;
* force this to be the first field so that we can get from
* netdev_priv() the right pointer.
*
+ * @updown: the device is up and ready for transmitting control and
+ * data packets. This implies @ready (communication infrastructure
+ * with the device is ready) and the device's firmware has been
+ * loaded and the device initialized.
+ *
+ * Write to it only inside a i2400m->init_mutex protected area
+ * followed with a wmb(); rmb() before accesing (unless locked
+ * inside i2400m->init_mutex). Read access can be loose like that
+ * [just using rmb()] because the paths that use this also do
+ * other error checks later on.
+ *
+ * @ready: Communication infrastructure with the device is ready, data
+ * frames can start to be passed around (this is lighter than
+ * using the WiMAX state for certain hot paths).
+ *
+ * Write to it only inside a i2400m->init_mutex protected area
+ * followed with a wmb(); rmb() before accesing (unless locked
+ * inside i2400m->init_mutex). Read access can be loose like that
+ * [just using rmb()] because the paths that use this also do
+ * other error checks later on.
+ *
* @rx_reorder: 1 if RX reordering is enabled; this can only be
* set at probe time.
*
@@ -362,6 +421,13 @@ struct i2400m_roq;
* delivered. Then the driver can release them to the host. See
* drivers/net/i2400m/rx.c for details.
*
+ * @rx_reports: reports received from the device that couldn't be
+ * processed because the driver wasn't still ready; when ready,
+ * they are pulled from here and chewed.
+ *
+ * @rx_reports_ws: Work struct used to kick a scan of the RX reports
+ * list and to process each.
+ *
* @src_mac_addr: MAC address used to make ethernet packets be coming
* from. This is generated at i2400m_setup() time and used during
* the life cycle of the instance. See i2400m_fake_eth_header().
@@ -422,6 +488,25 @@ struct i2400m_roq;
*
* @fw_version: version of the firmware interface, Major.minor,
* encoded in the high word and low word (major << 16 | minor).
+ *
+ * @fw_hdrs: NULL terminated array of pointers to the firmware
+ * headers. This is only available during firmware load time.
+ *
+ * @fw_cached: Used to cache firmware when the system goes to
+ * suspend/standby/hibernation (as on resume we can't read it). If
+ * NULL, no firmware was cached, read it. If ~0, you can't read
+ * any firmware files (the system still didn't come out of suspend
+ * and failed to cache one), so abort; otherwise, a valid cached
+ * firmware to be used. Access to this variable is protected by
+ * the spinlock i2400m->rx_lock.
+ *
+ * @barker: barker type that the device uses; this is initialized by
+ * i2400m_is_boot_barker() the first time it is called. Then it
+ * won't change during the life cycle of the device and everytime
+ * a boot barker is received, it is just verified for it being the
+ * same.
+ *
+ * @pm_notifier: used to register for PM events
*/
struct i2400m {
struct wimax_dev wimax_dev; /* FIRST! See doc */
@@ -429,7 +514,7 @@ struct i2400m {
unsigned updown:1; /* Network device is up or down */
unsigned boot_mode:1; /* is the device in boot mode? */
unsigned sboot:1; /* signed or unsigned fw boot */
- unsigned ready:1; /* all probing steps done */
+ unsigned ready:1; /* Device comm infrastructure ready */
unsigned rx_reorder:1; /* RX reorder is enabled */
u8 trace_msg_from_user; /* echo rx msgs to 'trace' pipe */
/* typed u8 so /sys/kernel/debug/u8 can tweak */
@@ -440,8 +525,10 @@ struct i2400m {
size_t bus_pl_size_max;
unsigned bus_bm_retries;
+ int (*bus_setup)(struct i2400m *);
int (*bus_dev_start)(struct i2400m *);
void (*bus_dev_stop)(struct i2400m *);
+ void (*bus_release)(struct i2400m *);
void (*bus_tx_kick)(struct i2400m *);
int (*bus_reset)(struct i2400m *, enum i2400m_reset_type);
ssize_t (*bus_bm_cmd_send)(struct i2400m *,
@@ -468,6 +555,8 @@ struct i2400m {
rx_num, rx_size_acc, rx_size_min, rx_size_max;
struct i2400m_roq *rx_roq; /* not under rx_lock! */
u8 src_mac_addr[ETH_HLEN];
+ struct list_head rx_reports; /* under rx_lock! */
+ struct work_struct rx_report_ws;
struct mutex msg_mutex; /* serialize command execution */
struct completion msg_completion;
@@ -487,37 +576,12 @@ struct i2400m {
struct dentry *debugfs_dentry;
const char *fw_name; /* name of the current firmware image */
unsigned long fw_version; /* version of the firmware interface */
-};
-
+ const struct i2400m_bcf_hdr **fw_hdrs;
+ struct i2400m_fw *fw_cached; /* protected by rx_lock */
+ struct i2400m_barker_db *barker;
-/*
- * Initialize a 'struct i2400m' from all zeroes
- *
- * This is a bus-generic API call.
- */
-static inline
-void i2400m_init(struct i2400m *i2400m)
-{
- wimax_dev_init(&i2400m->wimax_dev);
-
- i2400m->boot_mode = 1;
- i2400m->rx_reorder = 1;
- init_waitqueue_head(&i2400m->state_wq);
-
- spin_lock_init(&i2400m->tx_lock);
- i2400m->tx_pl_min = UINT_MAX;
- i2400m->tx_size_min = UINT_MAX;
-
- spin_lock_init(&i2400m->rx_lock);
- i2400m->rx_pl_min = UINT_MAX;
- i2400m->rx_size_min = UINT_MAX;
-
- mutex_init(&i2400m->msg_mutex);
- init_completion(&i2400m->msg_completion);
-
- mutex_init(&i2400m->init_mutex);
- /* wake_tx_ws is initialized in i2400m_tx_setup() */
-}
+ struct notifier_block pm_notifier;
+};
/*
@@ -577,6 +641,14 @@ extern void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *);
extern int i2400m_dev_bootstrap(struct i2400m *, enum i2400m_bri);
extern int i2400m_read_mac_addr(struct i2400m *);
extern int i2400m_bootrom_init(struct i2400m *, enum i2400m_bri);
+extern int i2400m_is_boot_barker(struct i2400m *, const void *, size_t);
+static inline
+int i2400m_is_d2h_barker(const void *buf)
+{
+ const __le32 *barker = buf;
+ return le32_to_cpu(*barker) == I2400M_D2H_MSG_BARKER;
+}
+extern void i2400m_unknown_barker(struct i2400m *, const void *, size_t);
/* Make/grok boot-rom header commands */
@@ -644,6 +716,8 @@ unsigned i2400m_brh_get_signature(const struct i2400m_bootrom_header *hdr)
/*
* Driver / device setup and internal functions
*/
+extern void i2400m_init(struct i2400m *);
+extern int i2400m_reset(struct i2400m *, enum i2400m_reset_type);
extern void i2400m_netdev_setup(struct net_device *net_dev);
extern int i2400m_sysfs_setup(struct device_driver *);
extern void i2400m_sysfs_release(struct device_driver *);
@@ -654,10 +728,14 @@ extern void i2400m_tx_release(struct i2400m *);
extern int i2400m_rx_setup(struct i2400m *);
extern void i2400m_rx_release(struct i2400m *);
+extern void i2400m_fw_cache(struct i2400m *);
+extern void i2400m_fw_uncache(struct i2400m *);
+
extern void i2400m_net_rx(struct i2400m *, struct sk_buff *, unsigned,
const void *, int);
extern void i2400m_net_erx(struct i2400m *, struct sk_buff *,
enum i2400m_cs);
+extern void i2400m_net_wake_stop(struct i2400m *);
enum i2400m_pt;
extern int i2400m_tx(struct i2400m *, const void *, size_t, enum i2400m_pt);
@@ -672,14 +750,12 @@ static inline int i2400m_debugfs_add(struct i2400m *i2400m)
static inline void i2400m_debugfs_rm(struct i2400m *i2400m) {}
#endif
-/* Called by _dev_start()/_dev_stop() to initialize the device itself */
+/* Initialize/shutdown the device */
extern int i2400m_dev_initialize(struct i2400m *);
extern void i2400m_dev_shutdown(struct i2400m *);
extern struct attribute_group i2400m_dev_attr_group;
-extern int i2400m_schedule_work(struct i2400m *,
- void (*)(struct work_struct *), gfp_t);
/* HDI message's payload description handling */
@@ -724,7 +800,9 @@ void i2400m_put(struct i2400m *i2400m)
dev_put(i2400m->wimax_dev.net_dev);
}
-extern int i2400m_dev_reset_handle(struct i2400m *);
+extern int i2400m_dev_reset_handle(struct i2400m *, const char *);
+extern int i2400m_pre_reset(struct i2400m *);
+extern int i2400m_post_reset(struct i2400m *);
/*
* _setup()/_release() are called by the probe/disconnect functions of
@@ -737,20 +815,6 @@ extern int i2400m_rx(struct i2400m *, struct sk_buff *);
extern struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *, size_t *);
extern void i2400m_tx_msg_sent(struct i2400m *);
-static const __le32 i2400m_NBOOT_BARKER[4] = {
- cpu_to_le32(I2400M_NBOOT_BARKER),
- cpu_to_le32(I2400M_NBOOT_BARKER),
- cpu_to_le32(I2400M_NBOOT_BARKER),
- cpu_to_le32(I2400M_NBOOT_BARKER)
-};
-
-static const __le32 i2400m_SBOOT_BARKER[4] = {
- cpu_to_le32(I2400M_SBOOT_BARKER),
- cpu_to_le32(I2400M_SBOOT_BARKER),
- cpu_to_le32(I2400M_SBOOT_BARKER),
- cpu_to_le32(I2400M_SBOOT_BARKER)
-};
-
extern int i2400m_power_save_disabled;
/*
@@ -773,10 +837,12 @@ struct device *i2400m_dev(struct i2400m *i2400m)
struct i2400m_work {
struct work_struct ws;
struct i2400m *i2400m;
+ size_t pl_size;
u8 pl[0];
};
-extern int i2400m_queue_work(struct i2400m *,
- void (*)(struct work_struct *), gfp_t,
+
+extern int i2400m_schedule_work(struct i2400m *,
+ void (*)(struct work_struct *), gfp_t,
const void *, size_t);
extern int i2400m_msg_check_status(const struct i2400m_l3l4_hdr *,
@@ -789,6 +855,7 @@ extern void i2400m_msg_ack_hook(struct i2400m *,
const struct i2400m_l3l4_hdr *, size_t);
extern void i2400m_report_hook(struct i2400m *,
const struct i2400m_l3l4_hdr *, size_t);
+extern void i2400m_report_hook_work(struct work_struct *);
extern int i2400m_cmd_enter_powersave(struct i2400m *);
extern int i2400m_cmd_get_state(struct i2400m *);
extern int i2400m_cmd_exit_idle(struct i2400m *);
@@ -849,6 +916,12 @@ void __i2400m_msleep(unsigned ms)
#endif
}
+
+/* module initialization helpers */
+extern int i2400m_barker_db_init(const char *);
+extern void i2400m_barker_db_exit(void);
+
+
/* Module parameters */
extern int i2400m_idle_mode_disabled;