1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
High Precision Event Timer Driver for Linux
The High Precision Event Timer (HPET) hardware follows a specification
by Intel and Microsoft which can be found at
http://www.intel.com/technology/architecture/hpetspec.htm
Each HPET has one fixed-rate counter (at 10+ MHz, hence "High Precision")
and up to 32 comparators. Normally three or more comparators are provided,
each of which can generate oneshot interupts and at least one of which has
additional hardware to support periodic interrupts. The comparators are
also called "timers", which can be misleading since usually timers are
independent of each other ... these share a counter, complicating resets.
HPET devices can support two interrupt routing modes. In one mode, the
comparators are additional interrupt sources with no particular system
role. Many x86 BIOS writers don't route HPET interrupts at all, which
prevents use of that mode. They support the other "legacy replacement"
mode where the first two comparators block interrupts from 8254 timers
and from the RTC.
The driver supports detection of HPET driver allocation and initialization
of the HPET before the driver module_init routine is called. This enables
platform code which uses timer 0 or 1 as the main timer to intercept HPET
initialization. An example of this initialization can be found in
arch/x86/kernel/hpet.c.
The driver provides a userspace API which resembles the API found in the
RTC driver framework. An example user space program is provided below.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <memory.h>
#include <malloc.h>
#include <time.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/time.h>
#include <linux/hpet.h>
extern void hpet_open_close(int, const char **);
extern void hpet_info(int, const char **);
extern void hpet_poll(int, const char **);
extern void hpet_fasync(int, const char **);
extern void hpet_read(int, const char **);
#include <sys/poll.h>
#include <sys/ioctl.h>
#include <signal.h>
struct hpet_command {
char *command;
void (*func)(int argc, const char ** argv);
} hpet_command[] = {
{
"open-close",
hpet_open_close
},
{
"info",
hpet_info
},
{
"poll",
hpet_poll
},
{
"fasync",
hpet_fasync
},
};
int
main(int argc, const char ** argv)
{
int i;
argc--;
argv++;
if (!argc) {
fprintf(stderr, "-hpet: requires command\n");
return -1;
}
for (i = 0; i < (sizeof (hpet_command) / sizeof (hpet_command[0])); i++)
if (!strcmp(argv[0], hpet_command[i].command)) {
argc--;
argv++;
fprintf(stderr, "-hpet: executing %s\n",
hpet_command[i].command);
hpet_command[i].func(argc, argv);
return 0;
}
fprintf(stderr, "do_hpet: command %s not implemented\n", argv[0]);
return -1;
}
void
hpet_open_close(int argc, const char **argv)
{
int fd;
if (argc != 1) {
fprintf(stderr, "hpet_open_close: device-name\n");
return;
}
fd = open(argv[0], O_RDONLY);
if (fd < 0)
fprintf(stderr, "hpet_open_close: open failed\n");
else
close(fd);
return;
}
void
hpet_info(int argc, const char **argv)
{
}
void
hpet_poll(int argc, const char **argv)
{
unsigned long freq;
int iterations, i, fd;
struct pollfd pfd;
struct hpet_info info;
struct timeval stv, etv;
struct timezone tz;
long usec;
if (argc != 3) {
fprintf(stderr, "hpet_poll: device-name freq iterations\n");
return;
}
freq = atoi(argv[1]);
iterations = atoi(argv[2]);
fd = open(argv[0], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "hpet_poll: open of %s failed\n", argv[0]);
return;
}
if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
fprintf(stderr, "hpet_poll: HPET_IRQFREQ failed\n");
goto out;
}
if (ioctl(fd, HPET_INFO, &info) < 0) {
fprintf(stderr, "hpet_poll: failed to get info\n");
goto out;
}
fprintf(stderr, "hpet_poll: info.hi_flags 0x%lx\n", info.hi_flags);
if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
fprintf(stderr, "hpet_poll: HPET_EPI failed\n");
goto out;
}
if (ioctl(fd, HPET_IE_ON, 0) < 0) {
fprintf(stderr, "hpet_poll, HPET_IE_ON failed\n");
goto out;
}
pfd.fd = fd;
pfd.events = POLLIN;
for (i = 0; i < iterations; i++) {
pfd.revents = 0;
gettimeofday(&stv, &tz);
if (poll(&pfd, 1, -1) < 0)
fprintf(stderr, "hpet_poll: poll failed\n");
else {
long data;
gettimeofday(&etv, &tz);
usec = stv.tv_sec * 1000000 + stv.tv_usec;
usec = (etv.tv_sec * 1000000 + etv.tv_usec) - usec;
fprintf(stderr,
"hpet_poll: expired time = 0x%lx\n", usec);
fprintf(stderr, "hpet_poll: revents = 0x%x\n",
pfd.revents);
if (read(fd, &data, sizeof(data)) != sizeof(data)) {
fprintf(stderr, "hpet_poll: read failed\n");
}
else
fprintf(stderr, "hpet_poll: data 0x%lx\n",
data);
}
}
out:
close(fd);
return;
}
static int hpet_sigio_count;
static void
hpet_sigio(int val)
{
fprintf(stderr, "hpet_sigio: called\n");
hpet_sigio_count++;
}
void
hpet_fasync(int argc, const char **argv)
{
unsigned long freq;
int iterations, i, fd, value;
sig_t oldsig;
struct hpet_info info;
hpet_sigio_count = 0;
fd = -1;
if ((oldsig = signal(SIGIO, hpet_sigio)) == SIG_ERR) {
fprintf(stderr, "hpet_fasync: failed to set signal handler\n");
return;
}
if (argc != 3) {
fprintf(stderr, "hpet_fasync: device-name freq iterations\n");
goto out;
}
fd = open(argv[0], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "hpet_fasync: failed to open %s\n", argv[0]);
return;
}
if ((fcntl(fd, F_SETOWN, getpid()) == 1) ||
((value = fcntl(fd, F_GETFL)) == 1) ||
(fcntl(fd, F_SETFL, value | O_ASYNC) == 1)) {
fprintf(stderr, "hpet_fasync: fcntl failed\n");
goto out;
}
freq = atoi(argv[1]);
iterations = atoi(argv[2]);
if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
fprintf(stderr, "hpet_fasync: HPET_IRQFREQ failed\n");
goto out;
}
if (ioctl(fd, HPET_INFO, &info) < 0) {
fprintf(stderr, "hpet_fasync: failed to get info\n");
goto out;
}
fprintf(stderr, "hpet_fasync: info.hi_flags 0x%lx\n", info.hi_flags);
if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
fprintf(stderr, "hpet_fasync: HPET_EPI failed\n");
goto out;
}
if (ioctl(fd, HPET_IE_ON, 0) < 0) {
fprintf(stderr, "hpet_fasync, HPET_IE_ON failed\n");
goto out;
}
for (i = 0; i < iterations; i++) {
(void) pause();
fprintf(stderr, "hpet_fasync: count = %d\n", hpet_sigio_count);
}
out:
signal(SIGIO, oldsig);
if (fd >= 0)
close(fd);
return;
}
|