1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
/*
* arch/sh/mm/consistent.c
*
* Copyright (C) 2004 - 2007 Paul Mundt
*
* Declared coherent memory functions based on arch/x86/kernel/pci-dma_32.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/mm.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <asm/cacheflush.h>
#include <asm/addrspace.h>
#include <asm/io.h>
struct dma_coherent_mem {
void *virt_base;
u32 device_base;
int size;
int flags;
unsigned long *bitmap;
};
void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
void *ret, *ret_nocache;
int order = get_order(size);
if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
return ret;
ret = (void *)__get_free_pages(gfp, order);
if (!ret)
return NULL;
memset(ret, 0, size);
/*
* Pages from the page allocator may have data present in
* cache. So flush the cache before using uncached memory.
*/
dma_cache_sync(dev, ret, size, DMA_BIDIRECTIONAL);
ret_nocache = ioremap_nocache(virt_to_phys(ret), size);
if (!ret_nocache) {
free_pages((unsigned long)ret, order);
return NULL;
}
*dma_handle = virt_to_phys(ret);
return ret_nocache;
}
EXPORT_SYMBOL(dma_alloc_coherent);
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
int order = get_order(size);
if (!dma_release_from_coherent(dev, order, vaddr)) {
WARN_ON(irqs_disabled()); /* for portability */
BUG_ON(mem && mem->flags & DMA_MEMORY_EXCLUSIVE);
free_pages((unsigned long)phys_to_virt(dma_handle), order);
iounmap(vaddr);
}
}
EXPORT_SYMBOL(dma_free_coherent);
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
{
#ifdef CONFIG_CPU_SH5
void *p1addr = vaddr;
#else
void *p1addr = (void*) P1SEGADDR((unsigned long)vaddr);
#endif
switch (direction) {
case DMA_FROM_DEVICE: /* invalidate only */
__flush_invalidate_region(p1addr, size);
break;
case DMA_TO_DEVICE: /* writeback only */
__flush_wback_region(p1addr, size);
break;
case DMA_BIDIRECTIONAL: /* writeback and invalidate */
__flush_purge_region(p1addr, size);
break;
default:
BUG();
}
}
EXPORT_SYMBOL(dma_cache_sync);
int platform_resource_setup_memory(struct platform_device *pdev,
char *name, unsigned long memsize)
{
struct resource *r;
dma_addr_t dma_handle;
void *buf;
r = pdev->resource + pdev->num_resources - 1;
if (r->flags) {
pr_warning("%s: unable to find empty space for resource\n",
name);
return -EINVAL;
}
buf = dma_alloc_coherent(NULL, memsize, &dma_handle, GFP_KERNEL);
if (!buf) {
pr_warning("%s: unable to allocate memory\n", name);
return -ENOMEM;
}
memset(buf, 0, memsize);
r->flags = IORESOURCE_MEM;
r->start = dma_handle;
r->end = r->start + memsize - 1;
r->name = name;
return 0;
}
|