1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
#
# RTC class/drivers configuration
#
config RTC_LIB
tristate
menuconfig RTC_CLASS
tristate "Real Time Clock"
default n
depends on !S390
select RTC_LIB
help
Generic RTC class support. If you say yes here, you will
be allowed to plug one or more RTCs to your system. You will
probably want to enable one or more of the interfaces below.
This driver can also be built as a module. If so, the module
will be called rtc-core.
if RTC_CLASS
config RTC_HCTOSYS
bool "Set system time from RTC on startup and resume"
depends on RTC_CLASS = y
default y
help
If you say yes here, the system time (wall clock) will be set using
the value read from a specified RTC device. This is useful to avoid
unnecessary fsck runs at boot time, and to network better.
config RTC_HCTOSYS_DEVICE
string "RTC used to set the system time"
depends on RTC_HCTOSYS = y
default "rtc0"
help
The RTC device that will be used to (re)initialize the system
clock, usually rtc0. Initialization is done when the system
starts up, and when it resumes from a low power state. This
device should record time in UTC, since the kernel won't do
timezone correction.
The driver for this RTC device must be loaded before late_initcall
functions run, so it must usually be statically linked.
This clock should be battery-backed, so that it reads the correct
time when the system boots from a power-off state. Otherwise, your
system will need an external clock source (like an NTP server).
If the clock you specify here is not battery backed, it may still
be useful to reinitialize system time when resuming from system
sleep states. Do not specify an RTC here unless it stays powered
during all this system's supported sleep states.
config RTC_DEBUG
bool "RTC debug support"
depends on RTC_CLASS = y
help
Say yes here to enable debugging support in the RTC framework
and individual RTC drivers.
comment "RTC interfaces"
config RTC_INTF_SYSFS
boolean "/sys/class/rtc/rtcN (sysfs)"
depends on SYSFS
default RTC_CLASS
help
Say yes here if you want to use your RTCs using sysfs interfaces,
/sys/class/rtc/rtc0 through /sys/.../rtcN.
This driver can also be built as a module. If so, the module
will be called rtc-sysfs.
config RTC_INTF_PROC
boolean "/proc/driver/rtc (procfs for rtc0)"
depends on PROC_FS
default RTC_CLASS
help
Say yes here if you want to use your first RTC through the proc
interface, /proc/driver/rtc. Other RTCs will not be available
through that API.
This driver can also be built as a module. If so, the module
will be called rtc-proc.
config RTC_INTF_DEV
boolean "/dev/rtcN (character devices)"
default RTC_CLASS
help
Say yes here if you want to use your RTCs using the /dev
interfaces, which "udev" sets up as /dev/rtc0 through
/dev/rtcN. You may want to set up a symbolic link so one
of these can be accessed as /dev/rtc, which is a name
expected by "hwclock" and some other programs.
This driver can also be built as a module. If so, the module
will be called rtc-dev.
config RTC_INTF_DEV_UIE_EMUL
bool "RTC UIE emulation on dev interface"
depends on RTC_INTF_DEV
help
Provides an emulation for RTC_UIE if the underlying rtc chip
driver does not expose RTC_UIE ioctls. Those requests generate
once-per-second update interrupts, used for synchronization.
config RTC_DRV_TEST
tristate "Test driver/device"
help
If you say yes here you get support for the
RTC test driver. It's a software RTC which can be
used to test the RTC subsystem APIs. It gets
the time from the system clock.
You want this driver only if you are doing development
on the RTC subsystem. Please read the source code
for further details.
This driver can also be built as a module. If so, the module
will be called rtc-test.
comment "I2C RTC drivers"
depends on I2C
if I2C
config RTC_DRV_DS1307
tristate "Dallas/Maxim DS1307/37/38/39/40, ST M41T00"
help
If you say yes here you get support for various compatible RTC
chips (often with battery backup) connected with I2C. This driver
should handle DS1307, DS1337, DS1338, DS1339, DS1340, ST M41T00,
and probably other chips. In some cases the RTC must already
have been initialized (by manufacturing or a bootloader).
The first seven registers on these chips hold an RTC, and other
registers may add features such as NVRAM, a trickle charger for
the RTC/NVRAM backup power, and alarms. NVRAM is visible in
sysfs, but other chip features may not be available.
This driver can also be built as a module. If so, the module
will be called rtc-ds1307.
config RTC_DRV_DS1374
tristate "Dallas/Maxim DS1374"
depends on RTC_CLASS && I2C
help
If you say yes here you get support for Dallas Semiconductor
DS1374 real-time clock chips. If an interrupt is associated
with the device, the alarm functionality is supported.
This driver can also be built as a module. If so, the module
will be called rtc-ds1374.
config RTC_DRV_DS1672
tristate "Dallas/Maxim DS1672"
help
If you say yes here you get support for the
Dallas/Maxim DS1672 timekeeping chip.
This driver can also be built as a module. If so, the module
will be called rtc-ds1672.
config RTC_DRV_MAX6900
tristate "Maxim MAX6900"
help
If you say yes here you will get support for the
Maxim MAX6900 I2C RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-max6900.
config RTC_DRV_RS5C372
tristate "Ricoh RS5C372A/B, RV5C386, RV5C387A"
help
If you say yes here you get support for the
Ricoh RS5C372A, RS5C372B, RV5C386, and RV5C387A RTC chips.
This driver can also be built as a module. If so, the module
will be called rtc-rs5c372.
config RTC_DRV_ISL1208
tristate "Intersil ISL1208"
help
If you say yes here you get support for the
Intersil ISL1208 RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-isl1208.
config RTC_DRV_X1205
tristate "Xicor/Intersil X1205"
help
If you say yes here you get support for the
Xicor/Intersil X1205 RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-x1205.
config RTC_DRV_PCF8563
tristate "Philips PCF8563/Epson RTC8564"
help
If you say yes here you get support for the
Philips PCF8563 RTC chip. The Epson RTC8564
should work as well.
This driver can also be built as a module. If so, the module
will be called rtc-pcf8563.
config RTC_DRV_PCF8583
tristate "Philips PCF8583"
help
If you say yes here you get support for the Philips PCF8583
RTC chip found on Acorn RiscPCs. This driver supports the
platform specific method of retrieving the current year from
the RTC's SRAM. It will work on other platforms with the same
chip, but the year will probably have to be tweaked.
This driver can also be built as a module. If so, the module
will be called rtc-pcf8583.
config RTC_DRV_M41T80
tristate "ST M41T80/81/82/83/84/85/87"
help
If you say Y here you will get support for the
ST M41T80 RTC chips series. Currently following chips are
supported: M41T80, M41T81, M41T82, M41T83, M41ST84, M41ST85
and M41ST87.
This driver can also be built as a module. If so, the module
will be called rtc-m41t80.
config RTC_DRV_M41T80_WDT
bool "ST M41T80 series RTC watchdog timer"
depends on RTC_DRV_M41T80
help
If you say Y here you will get support for the
watchdog timer in ST M41T80 RTC chips series.
config RTC_DRV_TWL92330
boolean "TI TWL92330/Menelaus"
depends on MENELAUS
help
If you say yes here you get support for the RTC on the
TWL92330 "Menelaus" power management chip, used with OMAP2
platforms. The support is integrated with the rest of
the Menelaus driver; it's not separate module.
config RTC_DRV_S35390A
tristate "Seiko Instruments S-35390A"
select BITREVERSE
help
If you say yes here you will get support for the Seiko
Instruments S-35390A.
This driver can also be built as a module. If so the module
will be called rtc-s35390a.
config RTC_DRV_FM3130
tristate "Ramtron FM3130"
help
If you say Y here you will get support for the
Ramtron FM3130 RTC chips.
Ramtron FM3130 is a chip with two separate devices inside,
RTC clock and FRAM. This driver provides only RTC functionality.
This driver can also be built as a module. If so the module
will be called rtc-fm3130.
endif # I2C
comment "SPI RTC drivers"
if SPI_MASTER
config RTC_DRV_M41T94
tristate "ST M41T94"
help
If you say yes here you will get support for the
ST M41T94 SPI RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-m41t94.
config RTC_DRV_DS1305
tristate "Dallas/Maxim DS1305/DS1306"
help
Select this driver to get support for the Dallas/Maxim DS1305
and DS1306 real time clock chips. These support a trickle
charger, alarms, and NVRAM in addition to the clock.
This driver can also be built as a module. If so, the module
will be called rtc-ds1305.
config RTC_DRV_MAX6902
tristate "Maxim MAX6902"
help
If you say yes here you will get support for the
Maxim MAX6902 SPI RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-max6902.
config RTC_DRV_R9701
tristate "Epson RTC-9701JE"
help
If you say yes here you will get support for the
Epson RTC-9701JE SPI RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-r9701.
config RTC_DRV_RS5C348
tristate "Ricoh RS5C348A/B"
help
If you say yes here you get support for the
Ricoh RS5C348A and RS5C348B RTC chips.
This driver can also be built as a module. If so, the module
will be called rtc-rs5c348.
config RTC_DRV_DS3234
tristate "Maxim/Dallas DS3234"
help
If you say yes here you get support for the
Maxim/Dallas DS3234 SPI RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-ds3234.
endif # SPI_MASTER
comment "Platform RTC drivers"
# this 'CMOS' RTC driver is arch dependent because <asm-generic/rtc.h>
# requires <asm/mc146818rtc.h> defining CMOS_READ/CMOS_WRITE, and a
# global rtc_lock ... it's not yet just another platform_device.
config RTC_DRV_CMOS
tristate "PC-style 'CMOS'"
depends on X86 || ALPHA || ARM || M32R || ATARI || PPC || MIPS || SPARC64
default y if X86
help
Say "yes" here to get direct support for the real time clock
found in every PC or ACPI-based system, and some other boards.
Specifically the original MC146818, compatibles like those in
PC south bridges, the DS12887 or M48T86, some multifunction
or LPC bus chips, and so on.
Your system will need to define the platform device used by
this driver, otherwise it won't be accessible. This means
you can safely enable this driver if you don't know whether
or not your board has this kind of hardware.
This driver can also be built as a module. If so, the module
will be called rtc-cmos.
config RTC_DRV_DS1216
tristate "Dallas DS1216"
depends on SNI_RM
help
If you say yes here you get support for the Dallas DS1216 RTC chips.
config RTC_DRV_DS1286
tristate "Dallas DS1286"
help
If you say yes here you get support for the Dallas DS1286 RTC chips.
config RTC_DRV_DS1302
tristate "Dallas DS1302"
depends on SH_SECUREEDGE5410
help
If you say yes here you get support for the Dallas DS1302 RTC chips.
config RTC_DRV_DS1511
tristate "Dallas DS1511"
depends on RTC_CLASS
help
If you say yes here you get support for the
Dallas DS1511 timekeeping/watchdog chip.
This driver can also be built as a module. If so, the module
will be called rtc-ds1511.
config RTC_DRV_DS1553
tristate "Maxim/Dallas DS1553"
help
If you say yes here you get support for the
Maxim/Dallas DS1553 timekeeping chip.
This driver can also be built as a module. If so, the module
will be called rtc-ds1553.
config RTC_DRV_DS1742
tristate "Maxim/Dallas DS1742/1743"
help
If you say yes here you get support for the
Maxim/Dallas DS1742/1743 timekeeping chip.
This driver can also be built as a module. If so, the module
will be called rtc-ds1742.
config RTC_DRV_STK17TA8
tristate "Simtek STK17TA8"
depends on RTC_CLASS
help
If you say yes here you get support for the
Simtek STK17TA8 timekeeping chip.
This driver can also be built as a module. If so, the module
will be called rtc-stk17ta8.
config RTC_DRV_M48T86
tristate "ST M48T86/Dallas DS12887"
help
If you say Y here you will get support for the
ST M48T86 and Dallas DS12887 RTC chips.
This driver can also be built as a module. If so, the module
will be called rtc-m48t86.
config RTC_DRV_M48T35
tristate "ST M48T35"
help
If you say Y here you will get support for the
ST M48T35 RTC chip.
This driver can also be built as a module, if so, the module
will be called "rtc-m48t35".
config RTC_DRV_M48T59
tristate "ST M48T59/M48T08/M48T02"
help
If you say Y here you will get support for the
ST M48T59 RTC chip and compatible ST M48T08 and M48T02.
These chips are usually found in Sun SPARC and UltraSPARC
workstations.
This driver can also be built as a module, if so, the module
will be called "rtc-m48t59".
config RTC_DRV_BQ4802
tristate "TI BQ4802"
help
If you say Y here you will get support for the TI
BQ4802 RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-bq4802.
config RTC_DRV_V3020
tristate "EM Microelectronic V3020"
help
If you say yes here you will get support for the
EM Microelectronic v3020 RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-v3020.
comment "on-CPU RTC drivers"
config RTC_DRV_OMAP
tristate "TI OMAP1"
depends on ARCH_OMAP15XX || ARCH_OMAP16XX || ARCH_OMAP730
help
Say "yes" here to support the real time clock on TI OMAP1 chips.
This driver can also be built as a module called rtc-omap.
config RTC_DRV_S3C
tristate "Samsung S3C series SoC RTC"
depends on ARCH_S3C2410
help
RTC (Realtime Clock) driver for the clock inbuilt into the
Samsung S3C24XX series of SoCs. This can provide periodic
interrupt rates from 1Hz to 64Hz for user programs, and
wakeup from Alarm.
The driver currently supports the common features on all the
S3C24XX range, such as the S3C2410, S3C2412, S3C2413, S3C2440
and S3C2442.
This driver can also be build as a module. If so, the module
will be called rtc-s3c.
config RTC_DRV_EP93XX
tristate "Cirrus Logic EP93XX"
depends on ARCH_EP93XX
help
If you say yes here you get support for the
RTC embedded in the Cirrus Logic EP93XX processors.
This driver can also be built as a module. If so, the module
will be called rtc-ep93xx.
config RTC_DRV_SA1100
tristate "SA11x0/PXA2xx"
depends on ARCH_SA1100 || ARCH_PXA
help
If you say Y here you will get access to the real time clock
built into your SA11x0 or PXA2xx CPU.
To compile this driver as a module, choose M here: the
module will be called rtc-sa1100.
config RTC_DRV_SH
tristate "SuperH On-Chip RTC"
depends on RTC_CLASS && SUPERH
help
Say Y here to enable support for the on-chip RTC found in
most SuperH processors.
To compile this driver as a module, choose M here: the
module will be called rtc-sh.
config RTC_DRV_VR41XX
tristate "NEC VR41XX"
depends on CPU_VR41XX
help
If you say Y here you will get access to the real time clock
built into your NEC VR41XX CPU.
To compile this driver as a module, choose M here: the
module will be called rtc-vr41xx.
config RTC_DRV_PL030
tristate "ARM AMBA PL030 RTC"
depends on ARM_AMBA
help
If you say Y here you will get access to ARM AMBA
PrimeCell PL030 RTC found on certain ARM SOCs.
To compile this driver as a module, choose M here: the
module will be called rtc-pl030.
config RTC_DRV_PL031
tristate "ARM AMBA PL031 RTC"
depends on ARM_AMBA
help
If you say Y here you will get access to ARM AMBA
PrimeCell PL031 RTC found on certain ARM SOCs.
To compile this driver as a module, choose M here: the
module will be called rtc-pl031.
config RTC_DRV_AT32AP700X
tristate "AT32AP700X series RTC"
depends on PLATFORM_AT32AP
help
Driver for the internal RTC (Realtime Clock) on Atmel AVR32
AT32AP700x family processors.
config RTC_DRV_AT91RM9200
tristate "AT91RM9200 or AT91SAM9RL"
depends on ARCH_AT91RM9200 || ARCH_AT91SAM9RL
help
Driver for the internal RTC (Realtime Clock) module found on
Atmel AT91RM9200's and AT91SAM9RL chips. On SAM9RL chips
this is powered by the backup power supply.
config RTC_DRV_AT91SAM9
tristate "AT91SAM9x/AT91CAP9"
depends on ARCH_AT91 && !(ARCH_AT91RM9200 || ARCH_AT91X40)
help
RTC driver for the Atmel AT91SAM9x and AT91CAP9 internal RTT
(Real Time Timer). These timers are powered by the backup power
supply (such as a small coin cell battery), but do not need to
be used as RTCs.
(On AT91SAM9rl chips you probably want to use the dedicated RTC
module and leave the RTT available for other uses.)
config RTC_DRV_AT91SAM9_RTT
int
range 0 1
default 0
prompt "RTT module Number" if ARCH_AT91SAM9263
depends on RTC_DRV_AT91SAM9
help
More than one RTT module is available. You can choose which
one will be used as an RTC. The default of zero is normally
OK to use, though some systems use that for non-RTC purposes.
config RTC_DRV_AT91SAM9_GPBR
int
range 0 3 if !ARCH_AT91SAM9263
range 0 15 if ARCH_AT91SAM9263
default 0
prompt "Backup Register Number"
depends on RTC_DRV_AT91SAM9
help
The RTC driver needs to use one of the General Purpose Backup
Registers (GPBRs) as well as the RTT. You can choose which one
will be used. The default of zero is normally OK to use, but
on some systems other software needs to use that register.
config RTC_DRV_BFIN
tristate "Blackfin On-Chip RTC"
depends on BLACKFIN && !BF561
help
If you say yes here you will get support for the
Blackfin On-Chip Real Time Clock.
This driver can also be built as a module. If so, the module
will be called rtc-bfin.
config RTC_DRV_RS5C313
tristate "Ricoh RS5C313"
depends on SH_LANDISK
help
If you say yes here you get support for the Ricoh RS5C313 RTC chips.
config RTC_DRV_PPC
tristate "PowerPC machine dependent RTC support"
depends on PPC_MERGE
help
The PowerPC kernel has machine-specific functions for accessing
the RTC. This exposes that functionality through the generic RTC
class.
config RTC_DRV_SUN4V
bool "SUN4V Hypervisor RTC"
depends on SPARC64
help
If you say Y here you will get support for the Hypervisor
based RTC on SUN4V systems.
config RTC_DRV_STARFIRE
bool "Starfire RTC"
depends on SPARC64
help
If you say Y here you will get support for the RTC found on
Starfire systems.
endif # RTC_CLASS
|