aboutsummaryrefslogtreecommitdiff
path: root/drivers/staging/altpciechdma/altpciechdma.c
blob: 2a02f8e625f7ffd9d14b21a40be4ff16e0865790 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
/**
 * Driver for Altera PCIe core chaining DMA reference design.
 *
 * Copyright (C) 2008 Leon Woestenberg  <leon.woestenberg@axon.tv>
 * Copyright (C) 2008 Nickolas Heppermann  <heppermannwdt@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *
 * Rationale: This driver exercises the chaining DMA read and write engine
 * in the reference design. It is meant as a complementary reference
 * driver that can be used for testing early designs as well as a basis to
 * write your custom driver.
 *
 * Status: Test results from Leon Woestenberg  <leon.woestenberg@axon.tv>:
 *
 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
 * Dell Precision 370 PC, x86, kernel 2.6.20 from Ubuntu 7.04.
 *
 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
 * Freescale MPC8313E-RDB board, PowerPC, 2.6.24 w/ Freescale patches.
 *
 * Driver tests passed with PCIe Compiler 8.1. With PCIe 8.0 the DMA
 * loopback test had reproducable compare errors. I assume a change
 * in the compiler or reference design, but could not find evidence nor
 * documentation on a change or fix in that direction.
 *
 * The reference design does not have readable locations and thus a
 * dummy read, used to flush PCI posted writes, cannot be performed.
 *
 */

#include <linux/kernel.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/pci.h>


/* by default do not build the character device interface */
/* XXX It is non-functional yet */
#ifndef ALTPCIECHDMA_CDEV
#  define ALTPCIECHDMA_CDEV 0
#endif

/* build the character device interface? */
#if ALTPCIECHDMA_CDEV
#  define MAX_CHDMA_SIZE (8 * 1024 * 1024)
#  include "mapper_user_to_sg.h"
#endif

/** driver name, mimicks Altera naming of the reference design */
#define DRV_NAME "altpciechdma"
/** number of BARs on the device */
#define APE_BAR_NUM (6)
/** BAR number where the RCSLAVE memory sits */
#define APE_BAR_RCSLAVE (0)
/** BAR number where the Descriptor Header sits */
#define APE_BAR_HEADER (2)

/** maximum size in bytes of the descriptor table, chdma logic limit */
#define APE_CHDMA_TABLE_SIZE (4096)
/* single transfer must not exceed 255 table entries. worst case this can be
 * achieved by 255 scattered pages, with only a single byte in the head and
 * tail pages. 253 * PAGE_SIZE is a safe upper bound for the transfer size.
 */
#define APE_CHDMA_MAX_TRANSFER_LEN (253 * PAGE_SIZE)

/**
 * Specifies those BARs to be mapped and the length of each mapping.
 *
 * Zero (0) means do not map, otherwise specifies the BAR lengths to be mapped.
 * If the actual BAR length is less, this is considered an error; then
 * reconfigure your PCIe core.
 *
 * @see ug_pci_express 8.0, table 7-2 at page 7-13.
 */
static const unsigned long bar_min_len[APE_BAR_NUM] =
	{ 32768, 0, 256, 0, 32768, 0 };

/**
 * Descriptor Header, controls the DMA read engine or write engine.
 *
 * The descriptor header is the main data structure for starting DMA transfers.
 *
 * It sits in End Point (FPGA) memory BAR[2] for 32-bit or BAR[3:2] for 64-bit.
 * It references a descriptor table which exists in Root Complex (PC) memory.
 * Writing the rclast field starts the DMA operation, thus all other structures
 * and fields must be setup before doing so.
 *
 * @see ug_pci_express 8.0, tables 7-3, 7-4 and 7-5 at page 7-14.
 * @note This header must be written in four 32-bit (PCI DWORD) writes.
 */
struct ape_chdma_header {
	/**
	 * w0 consists of two 16-bit fields:
	 * lsb u16 number; number of descriptors in ape_chdma_table
	 * msb u16 control; global control flags
	 */
	u32 w0;
	/* bus address to ape_chdma_table in Root Complex memory */
	u32 bdt_addr_h;
	u32 bdt_addr_l;
	/**
	 * w3 consists of two 16-bit fields:
	 * - lsb u16 rclast; last descriptor number available in Root Complex
	 *    - zero (0) means the first descriptor is ready,
	 *    - one (1) means two descriptors are ready, etc.
	 * - msb u16 reserved;
	 *
	 * @note writing to this memory location starts the DMA operation!
	 */
	u32 w3;
} __attribute__ ((packed));

/**
 * Descriptor Entry, describing a (non-scattered) single memory block transfer.
 *
 * There is one descriptor for each memory block involved in the transfer, a
 * block being a contiguous address range on the bus.
 *
 * Multiple descriptors are chained by means of the ape_chdma_table data
 * structure.
 *
 * @see ug_pci_express 8.0, tables 7-6, 7-7 and 7-8 at page 7-14 and page 7-15.
 */
struct ape_chdma_desc {
	/**
	 * w0 consists of two 16-bit fields:
	 * number of DWORDS to transfer
	 * - lsb u16 length;
	 * global control
	 * - msb u16 control;
	 */
	u32 w0;
	/* address of memory in the End Point */
	u32 ep_addr;
	/* bus address of source or destination memory in the Root Complex */
	u32 rc_addr_h;
	u32 rc_addr_l;
} __attribute__ ((packed));

/**
 * Descriptor Table, an array of descriptors describing a chained transfer.
 *
 * An array of descriptors, preceded by workspace for the End Point.
 * It exists in Root Complex memory.
 *
 * The End Point can update its last completed descriptor number in the
 * eplast field if requested by setting the EPLAST_ENA bit either
 * globally in the header's or locally in any descriptor's control field.
 *
 * @note this structure may not exceed 4096 bytes. This results in a
 * maximum of 4096 / (4 * 4) - 1 = 255 descriptors per chained transfer.
 *
 * @see ug_pci_express 8.0, tables 7-9, 7-10 and 7-11 at page 7-17 and page 7-18.
 */
struct ape_chdma_table {
	/* workspace 0x00-0x0b, reserved */
	u32 reserved1[3];
	/* workspace 0x0c-0x0f, last descriptor handled by End Point */
	u32 w3;
	/* the actual array of descriptors
    * 0x10-0x1f, 0x20-0x2f, ... 0xff0-0xfff (255 entries)
    */
	struct ape_chdma_desc desc[255];
} __attribute__ ((packed));

/**
 * Altera PCI Express ('ape') board specific book keeping data
 *
 * Keeps state of the PCIe core and the Chaining DMA controller
 * application.
 */
struct ape_dev {
	/** the kernel pci device data structure provided by probe() */
	struct pci_dev *pci_dev;
	/**
	 * kernel virtual address of the mapped BAR memory and IO regions of
	 * the End Point. Used by map_bars()/unmap_bars().
	 */
	void * __iomem bar[APE_BAR_NUM];
	/** kernel virtual address for Descriptor Table in Root Complex memory */
	struct ape_chdma_table *table_virt;
	/**
	 * bus address for the Descriptor Table in Root Complex memory, in
	 * CPU-native endianess
	 */
	dma_addr_t table_bus;
	/* if the device regions could not be allocated, assume and remember it
	 * is in use by another driver; this driver must not disable the device.
	 */
	int in_use;
	/* whether this driver enabled msi for the device */
	int msi_enabled;
	/* whether this driver could obtain the regions */
	int got_regions;
	/* irq line successfully requested by this driver, -1 otherwise */
	int irq_line;
	/* board revision */
	u8 revision;
	/* interrupt count, incremented by the interrupt handler */
	int irq_count;
#if ALTPCIECHDMA_CDEV
	/* character device */
	dev_t cdevno;
	struct cdev cdev;
	/* user space scatter gather mapper */
	struct sg_mapping_t *sgm;
#endif
};

/**
 * Using the subsystem vendor id and subsystem id, it is possible to
 * distinguish between different cards bases around the same
 * (third-party) logic core.
 *
 * Default Altera vendor and device ID's, and some (non-reserved)
 * ID's are now used here that are used amongst the testers/developers.
 */
static const struct pci_device_id ids[] = {
	{ PCI_DEVICE(0x1172, 0xE001), },
	{ PCI_DEVICE(0x2071, 0x2071), },
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, ids);

#if ALTPCIECHDMA_CDEV
/* prototypes for character device */
static int sg_init(struct ape_dev *ape);
static void sg_exit(struct ape_dev *ape);
#endif

/**
 * altpciechdma_isr() - Interrupt handler
 *
 */
static irqreturn_t altpciechdma_isr(int irq, void *dev_id)
{
	struct ape_dev *ape = (struct ape_dev *)dev_id;
	if (!ape)
		return IRQ_NONE;
	ape->irq_count++;
	return IRQ_HANDLED;
}

static int __devinit scan_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int i;
	for (i = 0; i < APE_BAR_NUM; i++) {
		unsigned long bar_start = pci_resource_start(dev, i);
		if (bar_start) {
			unsigned long bar_end = pci_resource_end(dev, i);
			unsigned long bar_flags = pci_resource_flags(dev, i);
			printk(KERN_DEBUG "BAR%d 0x%08lx-0x%08lx flags 0x%08lx\n",
			  i, bar_start, bar_end, bar_flags);
		}
	}
	return 0;
}

/**
 * Unmap the BAR regions that had been mapped earlier using map_bars()
 */
static void unmap_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int i;
	for (i = 0; i < APE_BAR_NUM; i++) {
	  /* is this BAR mapped? */
		if (ape->bar[i]) {
			/* unmap BAR */
			pci_iounmap(dev, ape->bar[i]);
			ape->bar[i] = NULL;
		}
	}
}

/**
 * Map the device memory regions into kernel virtual address space after
 * verifying their sizes respect the minimum sizes needed, given by the
 * bar_min_len[] array.
 */
static int __devinit map_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int rc;
	int i;
	/* iterate through all the BARs */
	for (i = 0; i < APE_BAR_NUM; i++) {
		unsigned long bar_start = pci_resource_start(dev, i);
		unsigned long bar_end = pci_resource_end(dev, i);
		unsigned long bar_length = bar_end - bar_start + 1;
		ape->bar[i] = NULL;
		/* do not map, and skip, BARs with length 0 */
		if (!bar_min_len[i])
			continue;
		/* do not map BARs with address 0 */
		if (!bar_start || !bar_end) {
			printk(KERN_DEBUG "BAR #%d is not present?!\n", i);
			rc = -1;
			goto fail;
		}
		bar_length = bar_end - bar_start + 1;
		/* BAR length is less than driver requires? */
		if (bar_length < bar_min_len[i]) {
			printk(KERN_DEBUG "BAR #%d length = %lu bytes but driver "
			"requires at least %lu bytes\n",
			i, bar_length, bar_min_len[i]);
			rc = -1;
			goto fail;
		}
		/* map the device memory or IO region into kernel virtual
		 * address space */
		ape->bar[i] = pci_iomap(dev, i, bar_min_len[i]);
		if (!ape->bar[i]) {
			printk(KERN_DEBUG "Could not map BAR #%d.\n", i);
			rc = -1;
			goto fail;
		}
		printk(KERN_DEBUG "BAR[%d] mapped at 0x%p with length %lu(/%lu).\n", i,
		ape->bar[i], bar_min_len[i], bar_length);
	}
	/* successfully mapped all required BAR regions */
	rc = 0;
	goto success;
fail:
	/* unmap any BARs that we did map */
	unmap_bars(ape, dev);
success:
	return rc;
}

#if 0 /* not yet implemented fully FIXME add opcode */
static void __devinit rcslave_test(struct ape_dev *ape, struct pci_dev *dev)
{
	u32 *rcslave_mem = (u32 *)ape->bar[APE_BAR_RCSLAVE];
	u32 result = 0;
	/** this number is assumed to be different each time this test runs */
	u32 seed = (u32)jiffies;
	u32 value = seed;
	int i;

	/* write loop */
	value = seed;
	for (i = 1024; i < 32768 / 4 ; i++) {
		printk(KERN_DEBUG "Writing 0x%08x to 0x%p.\n",
			(u32)value, (void *)rcslave_mem + i);
		iowrite32(value, rcslave_mem + i);
		value++;
	}
	/* read-back loop */
	value = seed;
	for (i = 1024; i < 32768 / 4; i++) {
		result = ioread32(rcslave_mem + i);
		if (result != value) {
			printk(KERN_DEBUG "Wrote 0x%08x to 0x%p, but read back 0x%08x.\n",
				(u32)value, (void *)rcslave_mem + i, (u32)result);
			break;
		}
		value++;
	}
}
#endif

/* obtain the 32 most significant (high) bits of a 32-bit or 64-bit address */
#define pci_dma_h(addr) ((addr >> 16) >> 16)
/* obtain the 32 least significant (low) bits of a 32-bit or 64-bit address */
#define pci_dma_l(addr) (addr & 0xffffffffUL)

/* ape_fill_chdma_desc() - Fill a Altera PCI Express Chaining DMA descriptor
 *
 * @desc pointer to descriptor to be filled
 * @addr root complex address
 * @ep_addr end point address
 * @len number of bytes, must be a multiple of 4.
 */
static inline void ape_chdma_desc_set(struct ape_chdma_desc *desc, dma_addr_t addr, u32 ep_addr, int len)
{
  BUG_ON(len & 3);
	desc->w0 = cpu_to_le32(len / 4);
	desc->ep_addr = cpu_to_le32(ep_addr);
	desc->rc_addr_h = cpu_to_le32(pci_dma_h(addr));
	desc->rc_addr_l = cpu_to_le32(pci_dma_l(addr));
}

#if ALTPCIECHDMA_CDEV
/*
 * ape_sg_to_chdma_table() - Create a device descriptor table from a scatterlist.
 *
 * The scatterlist must have been mapped by pci_map_sg(sgm->sgl).
 *
 * @sgl scatterlist.
 * @nents Number of entries in the scatterlist.
 * @first Start index in the scatterlist sgm->sgl.
 * @ep_addr End Point address for the scatter/gather transfer.
 * @desc pointer to first descriptor
 *
 * Returns Number of entries in the table on success, -1 on error.
 */
static int ape_sg_to_chdma_table(struct scatterlist *sgl, int nents, int first, struct ape_chdma_desc *desc, u32 ep_addr)
{
	int i = first, j = 0;
	/* inspect first entry */
	dma_addr_t addr = sg_dma_address(&sgl[i]);
	unsigned int len = sg_dma_len(&sgl[i]);
	/* contiguous block */
	dma_addr_t cont_addr = addr;
	unsigned int cont_len = len;
	/* iterate over remaining entries */
	for (; j < 25 && i < nents - 1; i++) {
		/* bus address of next entry i + 1 */
		dma_addr_t next = sg_dma_address(&sgl[i + 1]);
		/* length of this entry i */
		len = sg_dma_len(&sgl[i]);
		printk(KERN_DEBUG "%04d: addr=0x%Lx length=0x%08x\n", i,
			(unsigned long long)addr, len);
		/* entry i + 1 is non-contiguous with entry i? */
		if (next != addr + len) {
			/* TODO create entry here (we could overwrite i) */
			printk(KERN_DEBUG "%4d: cont_addr=0x%Lx cont_len=0x%08x\n", j,
				(unsigned long long)cont_addr, cont_len);
			/* set descriptor for contiguous transfer */
			ape_chdma_desc_set(&desc[j], cont_addr, ep_addr, cont_len);
			/* next end point memory address */
			ep_addr += cont_len;
			/* start new contiguous block */
			cont_addr = next;
			cont_len = 0;
			j++;
		}
		/* add entry i + 1 to current contiguous block */
		cont_len += len;
		/* goto entry i + 1 */
		addr = next;
	}
	/* TODO create entry here  (we could overwrite i) */
	printk(KERN_DEBUG "%04d: addr=0x%Lx length=0x%08x\n", i,
		(unsigned long long)addr, len);
	printk(KERN_DEBUG "%4d: cont_addr=0x%Lx length=0x%08x\n", j,
		(unsigned long long)cont_addr, cont_len);
	j++;
	return j;
}
#endif

/* compare buffers */
static inline int compare(u32 *p, u32 *q, int len)
{
	int result = -1;
	int fail = 0;
	int i;
	for (i = 0; i < len / 4; i++) {
		if (*p == *q) {
			/* every so many u32 words, show equals */
			if ((i & 255) == 0)
				printk(KERN_DEBUG "[%p] = 0x%08x    [%p] = 0x%08x\n", p, *p, q, *q);
		} else {
			fail++;
			/* show the first few miscompares */
			if (fail < 10)
				printk(KERN_DEBUG "[%p] = 0x%08x != [%p] = 0x%08x ?!\n", p, *p, q, *q);
				/* but stop after a while */
			else if (fail == 10)
				printk(KERN_DEBUG "---more errors follow! not printed---\n");
			else
				/* stop compare after this many errors */
			break;
		}
		p++;
		q++;
	}
	if (!fail)
		result = 0;
	return result;
}

/* dma_test() - Perform DMA loop back test to end point and back to root complex.
 *
 * Allocate a cache-coherent buffer in host memory, consisting of four pages.
 *
 * Fill the four memory pages such that each 32-bit word contains its own address.
 *
 * Now perform a loop back test, have the end point device copy the first buffer
 * half to end point memory, then have it copy back into the second half.
 *
 *   Create a descriptor table to copy the first buffer half into End Point
 *   memory. Instruct the End Point to do a DMA read using that table.
 *
 *   Create a descriptor table to copy End Point memory to the second buffer
 *   half. Instruct the End Point to do a DMA write using that table.
 *
 * Compare results, fail or pass.
 *
 */
static int __devinit dma_test(struct ape_dev *ape, struct pci_dev *dev)
{
	/* test result; guilty until proven innocent */
	int result = -1;
	/* the DMA read header sits at address 0x00 of the DMA engine BAR */
	struct ape_chdma_header *write_header = (struct ape_chdma_header *)ape->bar[APE_BAR_HEADER];
	/* the write DMA header sits after the read header at address 0x10 */
	struct ape_chdma_header *read_header = write_header + 1;
	/* virtual address of the allocated buffer */
	u8 *buffer_virt = 0;
	/* bus address of the allocated buffer */
	dma_addr_t buffer_bus = 0;
	int i, n = 0, irq_count;

	/* temporary value used to construct 32-bit data words */
	u32 w;

	printk(KERN_DEBUG "bar_tests(), PAGE_SIZE = 0x%0x\n", (int)PAGE_SIZE);
	printk(KERN_DEBUG "write_header = 0x%p.\n", write_header);
	printk(KERN_DEBUG "read_header = 0x%p.\n", read_header);
	printk(KERN_DEBUG "&write_header->w3 = 0x%p\n", &write_header->w3);
	printk(KERN_DEBUG "&read_header->w3 = 0x%p\n", &read_header->w3);
	printk(KERN_DEBUG "ape->table_virt = 0x%p.\n", ape->table_virt);

	if (!write_header || !read_header || !ape->table_virt)
		goto fail;

	/* allocate and map coherently-cached memory for a DMA-able buffer */
	/* @see Documentation/PCI/PCI-DMA-mapping.txt, near line 318 */
	buffer_virt = (u8 *)pci_alloc_consistent(dev, PAGE_SIZE * 4, &buffer_bus);
	if (!buffer_virt) {
		printk(KERN_DEBUG "Could not allocate coherent DMA buffer.\n");
		goto fail;
	}
	printk(KERN_DEBUG "Allocated cache-coherent DMA buffer (virtual address = %p, bus address = 0x%016llx).\n",
	       buffer_virt, (u64)buffer_bus);

	/* fill first half of buffer with its virtual address as data */
	for (i = 0; i < 4 * PAGE_SIZE; i += 4)
#if 0
		*(u32 *)(buffer_virt + i) = i / PAGE_SIZE + 1;
#else
		*(u32 *)(buffer_virt + i) = (u32)(unsigned long)(buffer_virt + i);
#endif
#if 0
  compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
#endif

#if 0
	/* fill second half of buffer with zeroes */
	for (i = 2 * PAGE_SIZE; i < 4 * PAGE_SIZE; i += 4)
		*(u32 *)(buffer_virt + i) = 0;
#endif

	/* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
	ape->table_virt->w3 = cpu_to_le32(0x0000FADE);

	/* fill in first descriptor */
	n = 0;
	/* read 8192 bytes from RC buffer to EP address 4096 */
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus, 4096, 2 * PAGE_SIZE);
#if 1
	for (i = 0; i < 255; i++)
		ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus, 4096, 2 * PAGE_SIZE);
	/* index of last descriptor */
	n = i - 1;
#endif
#if 0
	/* fill in next descriptor */
	n++;
	/* read 1024 bytes from RC buffer to EP address 4096 + 1024 */
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 1024, 4096 + 1024, 1024);
#endif

#if 1
	/* enable MSI after the last descriptor is completed */
	if (ape->msi_enabled)
		ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
#endif
#if 0
	/* dump descriptor table for debugging */
	printk(KERN_DEBUG "Descriptor Table (Read, in Root Complex Memory, # = %d)\n", n + 1);
	for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
		u32 *p = (u32 *)ape->table_virt;
		p += i;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
	}
#endif
	/* set available number of descriptors in table */
	w = (u32)(n + 1);
	w |= (1UL << 18)/*global EPLAST_EN*/;
#if 0
	if (ape->msi_enabled)
		w |= (1UL << 17)/*global MSI*/;
#endif
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", w, (void *)&read_header->w0);
	iowrite32(w, &read_header->w0);

	/* write table address (higher 32-bits) */
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)((ape->table_bus >> 16) >> 16), (void *)&read_header->bdt_addr_h);
	iowrite32(pci_dma_h(ape->table_bus), &read_header->bdt_addr_h);

	/* write table address (lower 32-bits) */
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)(ape->table_bus & 0xffffffffUL), (void *)&read_header->bdt_addr_l);
	iowrite32(pci_dma_l(ape->table_bus), &read_header->bdt_addr_l);

	/* memory write barrier */
	wmb();
	printk(KERN_DEBUG "Flush posted writes\n");
	/** FIXME Add dummy read to flush posted writes but need a readable location! */
#if 0
	(void)ioread32();
#endif

	/* remember IRQ count before the transfer */
	irq_count = ape->irq_count;
	/* write number of descriptors - this starts the DMA */
	printk(KERN_DEBUG "\nStart DMA read\n");
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)n, (void *)&read_header->w3);
	iowrite32(n, &read_header->w3);
	printk(KERN_DEBUG "EPLAST = %lu\n", le32_to_cpu(*(u32 *)&ape->table_virt->w3) & 0xffffUL);

	/** memory write barrier */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	printk(KERN_DEBUG "POLL FOR READ:\n");
	/* poll for chain completion, 1000 times 1 millisecond */
	for (i = 0; i < 100; i++) {
		volatile u32 *p = &ape->table_virt->w3;
		u32 eplast = le32_to_cpu(*p) & 0xffffUL;
		printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
		if (eplast == n) {
			printk(KERN_DEBUG "DONE\n");
			/* print IRQ count before the transfer */
			printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
			break;
		}
		udelay(100);
	}

	/* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
	ape->table_virt->w3 = cpu_to_le32(0x0000FADE);

	/* setup first descriptor */
	n = 0;
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
#if 1
	for (i = 0; i < 255; i++)
		ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);

	/* index of last descriptor */
	n = i - 1;
#endif
#if 1 /* test variable, make a module option later */
	if (ape->msi_enabled)
		ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
#endif
#if 0
	/* dump descriptor table for debugging */
	printk(KERN_DEBUG "Descriptor Table (Write, in Root Complex Memory, # = %d)\n", n + 1);
	for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
		u32 *p = (u32 *)ape->table_virt;
		p += i;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
	}
#endif

	/* set number of available descriptors in the table */
	w = (u32)(n + 1);
	/* enable updates of eplast for each descriptor completion */
	w |= (u32)(1UL << 18)/*global EPLAST_EN*/;
#if 0   /* test variable, make a module option later */
	/* enable MSI for each descriptor completion */
	if (ape->msi_enabled)
		w |= (1UL << 17)/*global MSI*/;
#endif
	iowrite32(w, &write_header->w0);
	iowrite32(pci_dma_h(ape->table_bus), &write_header->bdt_addr_h);
	iowrite32(pci_dma_l(ape->table_bus), &write_header->bdt_addr_l);

	/** memory write barrier and flush posted writes */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	irq_count = ape->irq_count;

	printk(KERN_DEBUG "\nStart DMA write\n");
	iowrite32(n, &write_header->w3);

	/** memory write barrier */
	wmb();
	/** dummy read to flush posted writes */
	/* (void) ioread32(); */

	printk(KERN_DEBUG "POLL FOR WRITE:\n");
	/* poll for completion, 1000 times 1 millisecond */
	for (i = 0; i < 100; i++) {
		volatile u32 *p = &ape->table_virt->w3;
		u32 eplast = le32_to_cpu(*p) & 0xffffUL;
		printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
		if (eplast == n) {
			printk(KERN_DEBUG "DONE\n");
			/* print IRQ count before the transfer */
			printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
			break;
		}
		udelay(100);
	}
	/* soft-reset DMA write engine */
	iowrite32(0x0000ffffUL, &write_header->w0);
	/* soft-reset DMA read engine */
	iowrite32(0x0000ffffUL, &read_header->w0);

	/** memory write barrier */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	/* compare first half of buffer with second half, should be identical */
	result = compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
	printk(KERN_DEBUG "DMA loop back test %s.\n", result ? "FAILED" : "PASSED");

	pci_free_consistent(dev, 4 * PAGE_SIZE, buffer_virt, buffer_bus);
fail:
	printk(KERN_DEBUG "bar_tests() end, result %d\n", result);
	return result;
}

/* Called when the PCI sub system thinks we can control the given device.
 * Inspect if we can support the device and if so take control of it.
 *
 * Return 0 when we have taken control of the given device.
 *
 * - allocate board specific bookkeeping
 * - allocate coherently-mapped memory for the descriptor table
 * - enable the board
 * - verify board revision
 * - request regions
 * - query DMA mask
 * - obtain and request irq
 * - map regions into kernel address space
 */
static int __devinit probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int rc = 0;
	struct ape_dev *ape = NULL;
	u8 irq_pin, irq_line;
	printk(KERN_DEBUG "probe(dev = 0x%p, pciid = 0x%p)\n", dev, id);

	/* allocate memory for per-board book keeping */
	ape = kzalloc(sizeof(struct ape_dev), GFP_KERNEL);
	if (!ape) {
		printk(KERN_DEBUG "Could not kzalloc()ate memory.\n");
		goto err_ape;
	}
	ape->pci_dev = dev;
	dev_set_drvdata(&dev->dev, ape);
	printk(KERN_DEBUG "probe() ape = 0x%p\n", ape);

	printk(KERN_DEBUG "sizeof(struct ape_chdma_table) = %d.\n",
		(int)sizeof(struct ape_chdma_table));
	/* the reference design has a size restriction on the table size */
	BUG_ON(sizeof(struct ape_chdma_table) > APE_CHDMA_TABLE_SIZE);

	/* allocate and map coherently-cached memory for a descriptor table */
	/* @see LDD3 page 446 */
	ape->table_virt = (struct ape_chdma_table *)pci_alloc_consistent(dev,
		APE_CHDMA_TABLE_SIZE, &ape->table_bus);
	/* could not allocate table? */
	if (!ape->table_virt) {
		printk(KERN_DEBUG "Could not dma_alloc()ate_coherent memory.\n");
		goto err_table;
	}

	printk(KERN_DEBUG "table_virt = %p, table_bus = 0x%16llx.\n",
		ape->table_virt, (u64)ape->table_bus);

	/* enable device */
	rc = pci_enable_device(dev);
	if (rc) {
		printk(KERN_DEBUG "pci_enable_device() failed\n");
		goto err_enable;
	}

	/* enable bus master capability on device */
	pci_set_master(dev);
	/* enable message signaled interrupts */
	rc = pci_enable_msi(dev);
	/* could not use MSI? */
	if (rc) {
		/* resort to legacy interrupts */
		printk(KERN_DEBUG "Could not enable MSI interrupting.\n");
		ape->msi_enabled = 0;
	/* MSI enabled, remember for cleanup */
	} else {
		printk(KERN_DEBUG "Enabled MSI interrupting.\n");
		ape->msi_enabled = 1;
	}

	pci_read_config_byte(dev, PCI_REVISION_ID, &ape->revision);
#if 0 /* example */
	/* (for example) this driver does not support revision 0x42 */
    if (ape->revision == 0x42) {
		printk(KERN_DEBUG "Revision 0x42 is not supported by this driver.\n");
		rc = -ENODEV;
		goto err_rev;
	}
#endif
	/** XXX check for native or legacy PCIe endpoint? */

	rc = pci_request_regions(dev, DRV_NAME);
	/* could not request all regions? */
	if (rc) {
		/* assume device is in use (and do not disable it later!) */
		ape->in_use = 1;
		goto err_regions;
	}
	ape->got_regions = 1;

#if 1   /* @todo For now, disable 64-bit, because I do not understand the implications (DAC!) */
	/* query for DMA transfer */
	/* @see Documentation/PCI/PCI-DMA-mapping.txt */
	if (!pci_set_dma_mask(dev, DMA_BIT_MASK(64))) {
		pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(64));
		/* use 64-bit DMA */
		printk(KERN_DEBUG "Using a 64-bit DMA mask.\n");
	} else
#endif
	if (!pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
		printk(KERN_DEBUG "Could not set 64-bit DMA mask.\n");
		pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(32));
		/* use 32-bit DMA */
		printk(KERN_DEBUG "Using a 32-bit DMA mask.\n");
	} else {
		printk(KERN_DEBUG "No suitable DMA possible.\n");
		/** @todo Choose proper error return code */
		rc = -1;
		goto err_mask;
	}

	rc = pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq_pin);
	/* could not read? */
	if (rc)
		goto err_irq;
	printk(KERN_DEBUG "IRQ pin #%d (0=none, 1=INTA#...4=INTD#).\n", irq_pin);

	/* @see LDD3, page 318 */
	rc = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq_line);
	/* could not read? */
	if (rc) {
		printk(KERN_DEBUG "Could not query PCI_INTERRUPT_LINE, error %d\n", rc);
		goto err_irq;
	}
	printk(KERN_DEBUG "IRQ line #%d.\n", irq_line);
#if 1
	irq_line = dev->irq;
	/* @see LDD3, page 259 */
	rc = request_irq(irq_line, altpciechdma_isr, IRQF_SHARED, DRV_NAME, (void *)ape);
	if (rc) {
		printk(KERN_DEBUG "Could not request IRQ #%d, error %d\n", irq_line, rc);
		ape->irq_line = -1;
		goto err_irq;
	}
	/* remember which irq we allocated */
	ape->irq_line = (int)irq_line;
	printk(KERN_DEBUG "Successfully requested IRQ #%d with dev_id 0x%p\n", irq_line, ape);
#endif
	/* show BARs */
	scan_bars(ape, dev);
	/* map BARs */
	rc = map_bars(ape, dev);
	if (rc)
		goto err_map;
#if ALTPCIECHDMA_CDEV
	/* initialize character device */
	rc = sg_init(ape);
	if (rc)
		goto err_cdev;
#endif
	/* perform DMA engines loop back test */
	rc = dma_test(ape, dev);
	(void)rc;
	/* successfully took the device */
	rc = 0;
	printk(KERN_DEBUG "probe() successful.\n");
	goto end;
#if ALTPCIECHDMA_CDEV
err_cdev:
	/* unmap the BARs */
	unmap_bars(ape, dev);
#endif
err_map:
	/* free allocated irq */
	if (ape->irq_line >= 0)
		free_irq(ape->irq_line, (void *)ape);
err_irq:
	if (ape->msi_enabled)
		pci_disable_msi(dev);
	/* disable the device iff it is not in use */
	if (!ape->in_use)
		pci_disable_device(dev);
	if (ape->got_regions)
		pci_release_regions(dev);
err_mask:
err_regions:
/*err_rev:*/
/* clean up everything before device enable() */
err_enable:
	if (ape->table_virt)
		pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
/* clean up everything before allocating descriptor table */
err_table:
	if (ape)
		kfree(ape);
err_ape:
end:
	return rc;
}

static void __devexit remove(struct pci_dev *dev)
{
	struct ape_dev *ape = dev_get_drvdata(&dev->dev);

	printk(KERN_DEBUG "remove(0x%p)\n", dev);
	printk(KERN_DEBUG "remove(dev = 0x%p) where ape = 0x%p\n", dev, ape);

	/* remove character device */
#if ALTPCIECHDMA_CDEV
	sg_exit(ape);
#endif

	if (ape->table_virt)
		pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);

	/* free IRQ
	 * @see LDD3 page 279
	 */
	if (ape->irq_line >= 0) {
		printk(KERN_DEBUG "Freeing IRQ #%d for dev_id 0x%08lx.\n",
		ape->irq_line, (unsigned long)ape);
		free_irq(ape->irq_line, (void *)ape);
	}
	/* MSI was enabled? */
	if (ape->msi_enabled) {
		/* Disable MSI @see Documentation/MSI-HOWTO.txt */
		pci_disable_msi(dev);
		ape->msi_enabled = 0;
	}
	/* unmap the BARs */
	unmap_bars(ape, dev);
	if (!ape->in_use)
		pci_disable_device(dev);
	if (ape->got_regions)
		/* to be called after device disable */
		pci_release_regions(dev);
}

#if ALTPCIECHDMA_CDEV

/*
 * Called when the device goes from unused to used.
 */
static int sg_open(struct inode *inode, struct file *file)
{
	struct ape_dev *ape;
	printk(KERN_DEBUG DRV_NAME "_open()\n");
	/* pointer to containing data structure of the character device inode */
	ape = container_of(inode->i_cdev, struct ape_dev, cdev);
	/* create a reference to our device state in the opened file */
	file->private_data = ape;
	/* create virtual memory mapper */
	ape->sgm = sg_create_mapper(MAX_CHDMA_SIZE);
	return 0;
}

/*
 * Called when the device goes from used to unused.
 */
static int sg_close(struct inode *inode, struct file *file)
{
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	printk(KERN_DEBUG DRV_NAME "_close()\n");
	/* destroy virtual memory mapper */
	sg_destroy_mapper(ape->sgm);
	return 0;
}

static ssize_t sg_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	(void)ape;
	printk(KERN_DEBUG DRV_NAME "_read(buf=0x%p, count=%lld, pos=%llu)\n", buf, (s64)count, (u64)*pos);
	return count;
}

/* sg_write() - Write to the device
 *
 * @buf userspace buffer
 * @count number of bytes in the userspace buffer
 *
 * Iterate over the userspace buffer, taking at most 255 * PAGE_SIZE bytes for
 * each DMA transfer.
 *   For each transfer, get the user pages, build a sglist, map, build a
 *   descriptor table. submit the transfer. wait for the interrupt handler
 *   to wake us on completion.
 */
static ssize_t sg_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
{
	int hwnents, tents;
	size_t transfer_len, remaining = count, done = 0;
	u64 transfer_addr = (u64)buf;
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	printk(KERN_DEBUG DRV_NAME "_write(buf=0x%p, count=%lld, pos=%llu)\n",
		buf, (s64)count, (u64)*pos);
	/* TODO transfer boundaries at PAGE_SIZE granularity */
	while (remaining > 0) {
		/* limit DMA transfer size */
		transfer_len = (remaining < APE_CHDMA_MAX_TRANSFER_LEN) ? remaining :
			APE_CHDMA_MAX_TRANSFER_LEN;
		/* get all user space buffer pages and create a scattergather list */
		sgm_map_user_pages(ape->sgm, transfer_addr, transfer_len, 0/*read from userspace*/);
		printk(KERN_DEBUG DRV_NAME "mapped_pages=%d\n", ape->sgm->mapped_pages);
		/* map all entries in the scattergather list */
		hwnents = pci_map_sg(ape->pci_dev, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
		printk(KERN_DEBUG DRV_NAME "hwnents=%d\n", hwnents);
		/* build device descriptor tables and submit them to the DMA engine */
		tents = ape_sg_to_chdma_table(ape->sgm->sgl, hwnents, 0, &ape->table_virt->desc[0], 4096);
		printk(KERN_DEBUG DRV_NAME "tents=%d\n", hwnents);
#if 0
		while (tables) {
			/* TODO build table */
			/* TODO submit table to the device */
			/* if engine stopped and unfinished work then start engine */
		}
		put ourselves on wait queue
#endif

		dma_unmap_sg(NULL, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
		/* dirty and free the pages */
		sgm_unmap_user_pages(ape->sgm, 1/*dirtied*/);
		/* book keeping */
		transfer_addr += transfer_len;
		remaining -= transfer_len;
		done += transfer_len;
	}
	return done;
}

/*
 * character device file operations
 */
static const struct file_operations sg_fops = {
	.owner = THIS_MODULE,
	.open = sg_open,
	.release = sg_close,
	.read = sg_read,
	.write = sg_write,
};

/* sg_init() - Initialize character device
 *
 * XXX Should ideally be tied to the device, on device probe, not module init.
 */
static int sg_init(struct ape_dev *ape)
{
	int rc;
	printk(KERN_DEBUG DRV_NAME " sg_init()\n");
	/* allocate a dynamically allocated character device node */
	rc = alloc_chrdev_region(&ape->cdevno, 0/*requested minor*/, 1/*count*/, DRV_NAME);
	/* allocation failed? */
	if (rc < 0) {
		printk("alloc_chrdev_region() = %d\n", rc);
		goto fail_alloc;
	}
	/* couple the device file operations to the character device */
	cdev_init(&ape->cdev, &sg_fops);
	ape->cdev.owner = THIS_MODULE;
	/* bring character device live */
	rc = cdev_add(&ape->cdev, ape->cdevno, 1/*count*/);
	if (rc < 0) {
		printk("cdev_add() = %d\n", rc);
		goto fail_add;
	}
	printk(KERN_DEBUG "altpciechdma = %d:%d\n", MAJOR(ape->cdevno), MINOR(ape->cdevno));
	return 0;
fail_add:
	/* free the dynamically allocated character device node */
    unregister_chrdev_region(ape->cdevno, 1/*count*/);
fail_alloc:
	return -1;
}

/* sg_exit() - Cleanup character device
 *
 * XXX Should ideally be tied to the device, on device remove, not module exit.
 */

static void sg_exit(struct ape_dev *ape)
{
	printk(KERN_DEBUG DRV_NAME " sg_exit()\n");
	/* remove the character device */
	cdev_del(&ape->cdev);
	/* free the dynamically allocated character device node */
	unregister_chrdev_region(ape->cdevno, 1/*count*/);
}

#endif /* ALTPCIECHDMA_CDEV */

/* used to register the driver with the PCI kernel sub system
 * @see LDD3 page 311
 */
static struct pci_driver pci_driver = {
	.name = DRV_NAME,
	.id_table = ids,
	.probe = probe,
	.remove = __devexit_p(remove),
	/* resume, suspend are optional */
};

/**
 * alterapciechdma_init() - Module initialization, registers devices.
 */
static int __init alterapciechdma_init(void)
{
	int rc = 0;
	printk(KERN_DEBUG DRV_NAME " init(), built at " __DATE__ " " __TIME__ "\n");
	/* register this driver with the PCI bus driver */
	rc = pci_register_driver(&pci_driver);
	if (rc < 0)
		return rc;
	return 0;
}

/**
 * alterapciechdma_init() - Module cleanup, unregisters devices.
 */
static void __exit alterapciechdma_exit(void)
{
	printk(KERN_DEBUG DRV_NAME " exit(), built at " __DATE__ " " __TIME__ "\n");
	/* unregister this driver from the PCI bus driver */
	pci_unregister_driver(&pci_driver);
}

MODULE_LICENSE("GPL");

module_init(alterapciechdma_init);
module_exit(alterapciechdma_exit);