1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
|
/****************************************************************************
(c) SYSTEC electronic GmbH, D-07973 Greiz, August-Bebel-Str. 29
www.systec-electronic.com
Project: openPOWERLINK
Description: Ethernet driver for Realtek RTL8139 chips
except the RTL8139C+, because it has a different
Tx descriptor handling.
License:
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of SYSTEC electronic GmbH nor the names of its
contributors may be used to endorse or promote products derived
from this software without prior written permission. For written
permission, please contact info@systec-electronic.com.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Severability Clause:
If a provision of this License is or becomes illegal, invalid or
unenforceable in any jurisdiction, that shall not affect:
1. the validity or enforceability in that jurisdiction of any other
provision of this License; or
2. the validity or enforceability in other jurisdictions of that or
any other provision of this License.
-------------------------------------------------------------------------
$RCSfile: Edrv8139.c,v $
$Author: D.Krueger $
$Revision: 1.10 $ $Date: 2008/11/21 09:00:38 $
$State: Exp $
Build Environment:
Dev C++ and GNU-Compiler for m68k
-------------------------------------------------------------------------
Revision History:
2008/02/05 d.k.: start of implementation
****************************************************************************/
#include "global.h"
#include "EplInc.h"
#include "edrv.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/version.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <asm/irq.h>
#include <linux/sched.h>
#include <linux/delay.h>
/***************************************************************************/
/* */
/* */
/* G L O B A L D E F I N I T I O N S */
/* */
/* */
/***************************************************************************/
// Buffer handling:
// All buffers are created statically (i.e. at compile time resp. at
// initialisation via kmalloc() ) and not dynamically on request (i.e. via
// EdrvAllocTxMsgBuffer().
// EdrvAllocTxMsgBuffer() searches for an unused buffer which is large enough.
// EdrvInit() may allocate some buffers with sizes less than maximum frame
// size (i.e. 1514 bytes), e.g. for SoC, SoA, StatusResponse, IdentResponse,
// NMT requests / commands. The less the size of the buffer the less the
// number of the buffer.
//---------------------------------------------------------------------------
// const defines
//---------------------------------------------------------------------------
#ifndef EDRV_MAX_TX_BUFFERS
#define EDRV_MAX_TX_BUFFERS 20
#endif
#define EDRV_MAX_FRAME_SIZE 0x600
#define EDRV_RX_BUFFER_SIZE 0x8610 // 32 kB + 16 Byte + 1,5 kB (WRAP is enabled)
#define EDRV_RX_BUFFER_LENGTH (EDRV_RX_BUFFER_SIZE & 0xF800) // buffer size cut down to 2 kB alignment
#define EDRV_TX_BUFFER_SIZE (EDRV_MAX_TX_BUFFERS * EDRV_MAX_FRAME_SIZE) // n * (MTU + 14 + 4)
#define DRV_NAME "epl"
#define EDRV_REGW_INT_MASK 0x3C // interrupt mask register
#define EDRV_REGW_INT_STATUS 0x3E // interrupt status register
#define EDRV_REGW_INT_ROK 0x0001 // Receive OK interrupt
#define EDRV_REGW_INT_RER 0x0002 // Receive error interrupt
#define EDRV_REGW_INT_TOK 0x0004 // Transmit OK interrupt
#define EDRV_REGW_INT_TER 0x0008 // Transmit error interrupt
#define EDRV_REGW_INT_RXOVW 0x0010 // Rx buffer overflow interrupt
#define EDRV_REGW_INT_PUN 0x0020 // Packet underrun/ link change interrupt
#define EDRV_REGW_INT_FOVW 0x0040 // Rx FIFO overflow interrupt
#define EDRV_REGW_INT_LENCHG 0x2000 // Cable length change interrupt
#define EDRV_REGW_INT_TIMEOUT 0x4000 // Time out interrupt
#define EDRV_REGW_INT_SERR 0x8000 // System error interrupt
#define EDRV_REGW_INT_MASK_DEF (EDRV_REGW_INT_ROK \
| EDRV_REGW_INT_RER \
| EDRV_REGW_INT_TOK \
| EDRV_REGW_INT_TER \
| EDRV_REGW_INT_RXOVW \
| EDRV_REGW_INT_FOVW \
| EDRV_REGW_INT_PUN \
| EDRV_REGW_INT_TIMEOUT \
| EDRV_REGW_INT_SERR) // default interrupt mask
#define EDRV_REGB_COMMAND 0x37 // command register
#define EDRV_REGB_COMMAND_RST 0x10
#define EDRV_REGB_COMMAND_RE 0x08
#define EDRV_REGB_COMMAND_TE 0x04
#define EDRV_REGB_COMMAND_BUFE 0x01
#define EDRV_REGB_CMD9346 0x50 // 93C46 command register
#define EDRV_REGB_CMD9346_LOCK 0x00 // lock configuration registers
#define EDRV_REGB_CMD9346_UNLOCK 0xC0 // unlock configuration registers
#define EDRV_REGDW_RCR 0x44 // Rx configuration register
#define EDRV_REGDW_RCR_NO_FTH 0x0000E000 // no receive FIFO threshold
#define EDRV_REGDW_RCR_RBLEN32K 0x00001000 // 32 kB receive buffer
#define EDRV_REGDW_RCR_MXDMAUNL 0x00000700 // unlimited maximum DMA burst size
#define EDRV_REGDW_RCR_NOWRAP 0x00000080 // do not wrap frame at end of buffer
#define EDRV_REGDW_RCR_AER 0x00000020 // accept error frames (CRC, alignment, collided)
#define EDRV_REGDW_RCR_AR 0x00000010 // accept runt
#define EDRV_REGDW_RCR_AB 0x00000008 // accept broadcast frames
#define EDRV_REGDW_RCR_AM 0x00000004 // accept multicast frames
#define EDRV_REGDW_RCR_APM 0x00000002 // accept physical match frames
#define EDRV_REGDW_RCR_AAP 0x00000001 // accept all frames
#define EDRV_REGDW_RCR_DEF (EDRV_REGDW_RCR_NO_FTH \
| EDRV_REGDW_RCR_RBLEN32K \
| EDRV_REGDW_RCR_MXDMAUNL \
| EDRV_REGDW_RCR_NOWRAP \
| EDRV_REGDW_RCR_AB \
| EDRV_REGDW_RCR_AM \
| EDRV_REGDW_RCR_APM) // default value
#define EDRV_REGDW_TCR 0x40 // Tx configuration register
#define EDRV_REGDW_TCR_VER_MASK 0x7CC00000 // mask for hardware version
#define EDRV_REGDW_TCR_VER_C 0x74000000 // RTL8139C
#define EDRV_REGDW_TCR_VER_D 0x74400000 // RTL8139D
#define EDRV_REGDW_TCR_IFG96 0x03000000 // default interframe gap (960 ns)
#define EDRV_REGDW_TCR_CRC 0x00010000 // disable appending of CRC by the controller
#define EDRV_REGDW_TCR_MXDMAUNL 0x00000700 // maximum DMA burst size of 2048 b
#define EDRV_REGDW_TCR_TXRETRY 0x00000000 // 16 retries
#define EDRV_REGDW_TCR_DEF (EDRV_REGDW_TCR_IFG96 \
| EDRV_REGDW_TCR_MXDMAUNL \
| EDRV_REGDW_TCR_TXRETRY)
#define EDRV_REGW_MULINT 0x5C // multiple interrupt select register
#define EDRV_REGDW_MPC 0x4C // missed packet counter register
#define EDRV_REGDW_TSAD0 0x20 // Transmit start address of descriptor 0
#define EDRV_REGDW_TSAD1 0x24 // Transmit start address of descriptor 1
#define EDRV_REGDW_TSAD2 0x28 // Transmit start address of descriptor 2
#define EDRV_REGDW_TSAD3 0x2C // Transmit start address of descriptor 3
#define EDRV_REGDW_TSD0 0x10 // Transmit status of descriptor 0
#define EDRV_REGDW_TSD_CRS 0x80000000 // Carrier sense lost
#define EDRV_REGDW_TSD_TABT 0x40000000 // Transmit Abort
#define EDRV_REGDW_TSD_OWC 0x20000000 // Out of window collision
#define EDRV_REGDW_TSD_TXTH_DEF 0x00020000 // Transmit FIFO threshold of 64 bytes
#define EDRV_REGDW_TSD_TOK 0x00008000 // Transmit OK
#define EDRV_REGDW_TSD_TUN 0x00004000 // Transmit FIFO underrun
#define EDRV_REGDW_TSD_OWN 0x00002000 // Owner
#define EDRV_REGDW_RBSTART 0x30 // Receive buffer start address
#define EDRV_REGW_CAPR 0x38 // Current address of packet read
#define EDRV_REGDW_IDR0 0x00 // ID register 0
#define EDRV_REGDW_IDR4 0x04 // ID register 4
#define EDRV_REGDW_MAR0 0x08 // Multicast address register 0
#define EDRV_REGDW_MAR4 0x0C // Multicast address register 4
// defines for the status word in the receive buffer
#define EDRV_RXSTAT_MAR 0x8000 // Multicast address received
#define EDRV_RXSTAT_PAM 0x4000 // Physical address matched
#define EDRV_RXSTAT_BAR 0x2000 // Broadcast address received
#define EDRV_RXSTAT_ISE 0x0020 // Invalid symbol error
#define EDRV_RXSTAT_RUNT 0x0010 // Runt packet received
#define EDRV_RXSTAT_LONG 0x0008 // Long packet
#define EDRV_RXSTAT_CRC 0x0004 // CRC error
#define EDRV_RXSTAT_FAE 0x0002 // Frame alignment error
#define EDRV_RXSTAT_ROK 0x0001 // Receive OK
#define EDRV_REGDW_WRITE(dwReg, dwVal) writel(dwVal, EdrvInstance_l.m_pIoAddr + dwReg)
#define EDRV_REGW_WRITE(dwReg, wVal) writew(wVal, EdrvInstance_l.m_pIoAddr + dwReg)
#define EDRV_REGB_WRITE(dwReg, bVal) writeb(bVal, EdrvInstance_l.m_pIoAddr + dwReg)
#define EDRV_REGDW_READ(dwReg) readl(EdrvInstance_l.m_pIoAddr + dwReg)
#define EDRV_REGW_READ(dwReg) readw(EdrvInstance_l.m_pIoAddr + dwReg)
#define EDRV_REGB_READ(dwReg) readb(EdrvInstance_l.m_pIoAddr + dwReg)
// TracePoint support for realtime-debugging
#ifdef _DBG_TRACE_POINTS_
void PUBLIC TgtDbgSignalTracePoint(BYTE bTracePointNumber_p);
void PUBLIC TgtDbgPostTraceValue(DWORD dwTraceValue_p);
#define TGT_DBG_SIGNAL_TRACE_POINT(p) TgtDbgSignalTracePoint(p)
#define TGT_DBG_POST_TRACE_VALUE(v) TgtDbgPostTraceValue(v)
#else
#define TGT_DBG_SIGNAL_TRACE_POINT(p)
#define TGT_DBG_POST_TRACE_VALUE(v)
#endif
#define EDRV_COUNT_SEND TGT_DBG_SIGNAL_TRACE_POINT(2)
#define EDRV_COUNT_TIMEOUT TGT_DBG_SIGNAL_TRACE_POINT(3)
#define EDRV_COUNT_PCI_ERR TGT_DBG_SIGNAL_TRACE_POINT(4)
#define EDRV_COUNT_TX TGT_DBG_SIGNAL_TRACE_POINT(5)
#define EDRV_COUNT_RX TGT_DBG_SIGNAL_TRACE_POINT(6)
#define EDRV_COUNT_LATECOLLISION TGT_DBG_SIGNAL_TRACE_POINT(10)
#define EDRV_COUNT_TX_COL_RL TGT_DBG_SIGNAL_TRACE_POINT(11)
#define EDRV_COUNT_TX_FUN TGT_DBG_SIGNAL_TRACE_POINT(12)
#define EDRV_COUNT_TX_ERR TGT_DBG_SIGNAL_TRACE_POINT(13)
#define EDRV_COUNT_RX_CRC TGT_DBG_SIGNAL_TRACE_POINT(14)
#define EDRV_COUNT_RX_ERR TGT_DBG_SIGNAL_TRACE_POINT(15)
#define EDRV_COUNT_RX_FOVW TGT_DBG_SIGNAL_TRACE_POINT(16)
#define EDRV_COUNT_RX_PUN TGT_DBG_SIGNAL_TRACE_POINT(17)
#define EDRV_COUNT_RX_FAE TGT_DBG_SIGNAL_TRACE_POINT(18)
#define EDRV_COUNT_RX_OVW TGT_DBG_SIGNAL_TRACE_POINT(19)
#define EDRV_TRACE_CAPR(x) TGT_DBG_POST_TRACE_VALUE(((x) & 0xFFFF) | 0x06000000)
#define EDRV_TRACE_RX_CRC(x) TGT_DBG_POST_TRACE_VALUE(((x) & 0xFFFF) | 0x0E000000)
#define EDRV_TRACE_RX_ERR(x) TGT_DBG_POST_TRACE_VALUE(((x) & 0xFFFF) | 0x0F000000)
#define EDRV_TRACE_RX_PUN(x) TGT_DBG_POST_TRACE_VALUE(((x) & 0xFFFF) | 0x11000000)
#define EDRV_TRACE(x) TGT_DBG_POST_TRACE_VALUE(((x) & 0xFFFF0000) | 0x0000FEC0)
//---------------------------------------------------------------------------
// local types
//---------------------------------------------------------------------------
/*
typedef struct
{
BOOL m_fUsed;
unsigned int m_uiSize;
MCD_bufDescFec *m_pBufDescr;
} tEdrvTxBufferIntern;
*/
// Private structure
typedef struct {
struct pci_dev *m_pPciDev; // pointer to PCI device structure
void *m_pIoAddr; // pointer to register space of Ethernet controller
BYTE *m_pbRxBuf; // pointer to Rx buffer
dma_addr_t m_pRxBufDma;
BYTE *m_pbTxBuf; // pointer to Tx buffer
dma_addr_t m_pTxBufDma;
BOOL m_afTxBufUsed[EDRV_MAX_TX_BUFFERS];
unsigned int m_uiCurTxDesc;
tEdrvInitParam m_InitParam;
tEdrvTxBuffer *m_pLastTransmittedTxBuffer;
} tEdrvInstance;
//---------------------------------------------------------------------------
// local function prototypes
//---------------------------------------------------------------------------
static int EdrvInitOne(struct pci_dev *pPciDev,
const struct pci_device_id *pId);
static void EdrvRemoveOne(struct pci_dev *pPciDev);
//---------------------------------------------------------------------------
// modul globale vars
//---------------------------------------------------------------------------
// buffers and buffer descriptors and pointers
static struct pci_device_id aEdrvPciTbl[] = {
{0x10ec, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0,}
};
MODULE_DEVICE_TABLE(pci, aEdrvPciTbl);
static tEdrvInstance EdrvInstance_l;
static struct pci_driver EdrvDriver = {
.name = DRV_NAME,
.id_table = aEdrvPciTbl,
.probe = EdrvInitOne,
.remove = EdrvRemoveOne,
};
/***************************************************************************/
/* */
/* */
/* C L A S S <edrv> */
/* */
/* */
/***************************************************************************/
//
// Description:
//
//
/***************************************************************************/
//=========================================================================//
// //
// P R I V A T E D E F I N I T I O N S //
// //
//=========================================================================//
//---------------------------------------------------------------------------
// const defines
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
// local types
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
// local vars
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
// local function prototypes
//---------------------------------------------------------------------------
static BYTE EdrvCalcHash(BYTE * pbMAC_p);
//---------------------------------------------------------------------------
//
// Function: EdrvInit
//
// Description: function for init of the Ethernet controller
//
// Parameters: pEdrvInitParam_p = pointer to struct including the init-parameters
//
// Returns: Errorcode = kEplSuccessful
// = kEplNoResource
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvInit(tEdrvInitParam * pEdrvInitParam_p)
{
tEplKernel Ret;
int iResult;
Ret = kEplSuccessful;
// clear instance structure
EPL_MEMSET(&EdrvInstance_l, 0, sizeof(EdrvInstance_l));
// save the init data
EdrvInstance_l.m_InitParam = *pEdrvInitParam_p;
// register PCI driver
iResult = pci_register_driver(&EdrvDriver);
if (iResult != 0) {
printk("%s pci_register_driver failed with %d\n", __FUNCTION__,
iResult);
Ret = kEplNoResource;
goto Exit;
}
if (EdrvInstance_l.m_pPciDev == NULL) {
printk("%s m_pPciDev=NULL\n", __FUNCTION__);
Ret = kEplNoResource;
goto Exit;
}
// read MAC address from controller
printk("%s local MAC = ", __FUNCTION__);
for (iResult = 0; iResult < 6; iResult++) {
pEdrvInitParam_p->m_abMyMacAddr[iResult] =
EDRV_REGB_READ((EDRV_REGDW_IDR0 + iResult));
printk("%02X ",
(unsigned int)pEdrvInitParam_p->m_abMyMacAddr[iResult]);
}
printk("\n");
Exit:
return Ret;
}
//---------------------------------------------------------------------------
//
// Function: EdrvShutdown
//
// Description: Shutdown the Ethernet controller
//
// Parameters: void
//
// Returns: Errorcode = kEplSuccessful
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvShutdown(void)
{
// unregister PCI driver
printk("%s calling pci_unregister_driver()\n", __FUNCTION__);
pci_unregister_driver(&EdrvDriver);
return kEplSuccessful;
}
//---------------------------------------------------------------------------
//
// Function: EdrvDefineRxMacAddrEntry
//
// Description: Set a multicast entry into the Ethernet controller
//
// Parameters: pbMacAddr_p = pointer to multicast entry to set
//
// Returns: Errorcode = kEplSuccessful
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvDefineRxMacAddrEntry(BYTE * pbMacAddr_p)
{
tEplKernel Ret = kEplSuccessful;
DWORD dwData;
BYTE bHash;
bHash = EdrvCalcHash(pbMacAddr_p);
/*
dwData = ether_crc(6, pbMacAddr_p);
printk("EdrvDefineRxMacAddrEntry('%02X:%02X:%02X:%02X:%02X:%02X') hash = %u / %u ether_crc = 0x%08lX\n",
(WORD) pbMacAddr_p[0], (WORD) pbMacAddr_p[1], (WORD) pbMacAddr_p[2],
(WORD) pbMacAddr_p[3], (WORD) pbMacAddr_p[4], (WORD) pbMacAddr_p[5],
(WORD) bHash, (WORD) (dwData >> 26), dwData);
*/
if (bHash > 31) {
dwData = EDRV_REGDW_READ(EDRV_REGDW_MAR4);
dwData |= 1 << (bHash - 32);
EDRV_REGDW_WRITE(EDRV_REGDW_MAR4, dwData);
} else {
dwData = EDRV_REGDW_READ(EDRV_REGDW_MAR0);
dwData |= 1 << bHash;
EDRV_REGDW_WRITE(EDRV_REGDW_MAR0, dwData);
}
return Ret;
}
//---------------------------------------------------------------------------
//
// Function: EdrvUndefineRxMacAddrEntry
//
// Description: Reset a multicast entry in the Ethernet controller
//
// Parameters: pbMacAddr_p = pointer to multicast entry to reset
//
// Returns: Errorcode = kEplSuccessful
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvUndefineRxMacAddrEntry(BYTE * pbMacAddr_p)
{
tEplKernel Ret = kEplSuccessful;
DWORD dwData;
BYTE bHash;
bHash = EdrvCalcHash(pbMacAddr_p);
if (bHash > 31) {
dwData = EDRV_REGDW_READ(EDRV_REGDW_MAR4);
dwData &= ~(1 << (bHash - 32));
EDRV_REGDW_WRITE(EDRV_REGDW_MAR4, dwData);
} else {
dwData = EDRV_REGDW_READ(EDRV_REGDW_MAR0);
dwData &= ~(1 << bHash);
EDRV_REGDW_WRITE(EDRV_REGDW_MAR0, dwData);
}
return Ret;
}
//---------------------------------------------------------------------------
//
// Function: EdrvAllocTxMsgBuffer
//
// Description: Register a Tx-Buffer
//
// Parameters: pBuffer_p = pointer to Buffer structure
//
// Returns: Errorcode = kEplSuccessful
// = kEplEdrvNoFreeBufEntry
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvAllocTxMsgBuffer(tEdrvTxBuffer * pBuffer_p)
{
tEplKernel Ret = kEplSuccessful;
DWORD i;
if (pBuffer_p->m_uiMaxBufferLen > EDRV_MAX_FRAME_SIZE) {
Ret = kEplEdrvNoFreeBufEntry;
goto Exit;
}
// search a free Tx buffer with appropriate size
for (i = 0; i < EDRV_MAX_TX_BUFFERS; i++) {
if (EdrvInstance_l.m_afTxBufUsed[i] == FALSE) {
// free channel found
EdrvInstance_l.m_afTxBufUsed[i] = TRUE;
pBuffer_p->m_uiBufferNumber = i;
pBuffer_p->m_pbBuffer =
EdrvInstance_l.m_pbTxBuf +
(i * EDRV_MAX_FRAME_SIZE);
pBuffer_p->m_uiMaxBufferLen = EDRV_MAX_FRAME_SIZE;
break;
}
}
if (i >= EDRV_MAX_TX_BUFFERS) {
Ret = kEplEdrvNoFreeBufEntry;
goto Exit;
}
Exit:
return Ret;
}
//---------------------------------------------------------------------------
//
// Function: EdrvReleaseTxMsgBuffer
//
// Description: Register a Tx-Buffer
//
// Parameters: pBuffer_p = pointer to Buffer structure
//
// Returns: Errorcode = kEplSuccessful
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvReleaseTxMsgBuffer(tEdrvTxBuffer * pBuffer_p)
{
unsigned int uiBufferNumber;
uiBufferNumber = pBuffer_p->m_uiBufferNumber;
if (uiBufferNumber < EDRV_MAX_TX_BUFFERS) {
EdrvInstance_l.m_afTxBufUsed[uiBufferNumber] = FALSE;
}
return kEplSuccessful;
}
//---------------------------------------------------------------------------
//
// Function: EdrvSendTxMsg
//
// Description: immediately starts the transmission of the buffer
//
// Parameters: pBuffer_p = buffer descriptor to transmit
//
// Returns: Errorcode = kEplSuccessful
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvSendTxMsg(tEdrvTxBuffer * pBuffer_p)
{
tEplKernel Ret = kEplSuccessful;
unsigned int uiBufferNumber;
DWORD dwTemp;
uiBufferNumber = pBuffer_p->m_uiBufferNumber;
if ((uiBufferNumber >= EDRV_MAX_TX_BUFFERS)
|| (EdrvInstance_l.m_afTxBufUsed[uiBufferNumber] == FALSE)) {
Ret = kEplEdrvBufNotExisting;
goto Exit;
}
if (EdrvInstance_l.m_pLastTransmittedTxBuffer != NULL) { // transmission is already active
Ret = kEplInvalidOperation;
dwTemp =
EDRV_REGDW_READ((EDRV_REGDW_TSD0 +
(EdrvInstance_l.m_uiCurTxDesc *
sizeof(DWORD))));
printk("%s InvOp TSD%u = 0x%08lX", __FUNCTION__,
EdrvInstance_l.m_uiCurTxDesc, dwTemp);
printk(" Cmd = 0x%02X\n",
(WORD) EDRV_REGB_READ(EDRV_REGB_COMMAND));
goto Exit;
}
// save pointer to buffer structure for TxHandler
EdrvInstance_l.m_pLastTransmittedTxBuffer = pBuffer_p;
EDRV_COUNT_SEND;
// pad with zeros if necessary, because controller does not do it
if (pBuffer_p->m_uiTxMsgLen < MIN_ETH_SIZE) {
EPL_MEMSET(pBuffer_p->m_pbBuffer + pBuffer_p->m_uiTxMsgLen, 0,
MIN_ETH_SIZE - pBuffer_p->m_uiTxMsgLen);
pBuffer_p->m_uiTxMsgLen = MIN_ETH_SIZE;
}
// set DMA address of buffer
EDRV_REGDW_WRITE((EDRV_REGDW_TSAD0 +
(EdrvInstance_l.m_uiCurTxDesc * sizeof(DWORD))),
(EdrvInstance_l.m_pTxBufDma +
(uiBufferNumber * EDRV_MAX_FRAME_SIZE)));
dwTemp =
EDRV_REGDW_READ((EDRV_REGDW_TSAD0 +
(EdrvInstance_l.m_uiCurTxDesc * sizeof(DWORD))));
// printk("%s TSAD%u = 0x%08lX", __FUNCTION__, EdrvInstance_l.m_uiCurTxDesc, dwTemp);
// start transmission
EDRV_REGDW_WRITE((EDRV_REGDW_TSD0 +
(EdrvInstance_l.m_uiCurTxDesc * sizeof(DWORD))),
(EDRV_REGDW_TSD_TXTH_DEF | pBuffer_p->m_uiTxMsgLen));
dwTemp =
EDRV_REGDW_READ((EDRV_REGDW_TSD0 +
(EdrvInstance_l.m_uiCurTxDesc * sizeof(DWORD))));
// printk(" TSD%u = 0x%08lX / 0x%08lX\n", EdrvInstance_l.m_uiCurTxDesc, dwTemp, (DWORD)(EDRV_REGDW_TSD_TXTH_DEF | pBuffer_p->m_uiTxMsgLen));
Exit:
return Ret;
}
#if 0
//---------------------------------------------------------------------------
//
// Function: EdrvTxMsgReady
//
// Description: starts copying the buffer to the ethernet controller's FIFO
//
// Parameters: pbBuffer_p - bufferdescriptor to transmit
//
// Returns: Errorcode - kEplSuccessful
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvTxMsgReady(tEdrvTxBuffer * pBuffer_p)
{
tEplKernel Ret = kEplSuccessful;
unsigned int uiBufferNumber;
Exit:
return Ret;
}
//---------------------------------------------------------------------------
//
// Function: EdrvTxMsgStart
//
// Description: starts transmission of the ethernet controller's FIFO
//
// Parameters: pbBuffer_p - bufferdescriptor to transmit
//
// Returns: Errorcode - kEplSuccessful
//
// State:
//
//---------------------------------------------------------------------------
tEplKernel EdrvTxMsgStart(tEdrvTxBuffer * pBuffer_p)
{
tEplKernel Ret = kEplSuccessful;
return Ret;
}
#endif
//---------------------------------------------------------------------------
//
// Function: EdrvReinitRx
//
// Description: reinitialize the Rx process, because of error
//
// Parameters: void
//
// Returns: void
//
// State:
//
//---------------------------------------------------------------------------
static void EdrvReinitRx(void)
{
BYTE bCmd;
// simply switch off and on the receiver
// this will reset the CAPR register
bCmd = EDRV_REGB_READ(EDRV_REGB_COMMAND);
EDRV_REGB_WRITE(EDRV_REGB_COMMAND, (bCmd & ~EDRV_REGB_COMMAND_RE));
EDRV_REGB_WRITE(EDRV_REGB_COMMAND, bCmd);
// set receive configuration register
EDRV_REGDW_WRITE(EDRV_REGDW_RCR, EDRV_REGDW_RCR_DEF);
}
//---------------------------------------------------------------------------
//
// Function: EdrvInterruptHandler
//
// Description: interrupt handler
//
// Parameters: void
//
// Returns: void
//
// State:
//
//---------------------------------------------------------------------------
#if 0
void EdrvInterruptHandler(void)
{
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
static int TgtEthIsr(int nIrqNum_p, void *ppDevInstData_p)
#else
static int TgtEthIsr(int nIrqNum_p, void *ppDevInstData_p,
struct pt_regs *ptRegs_p)
#endif
{
// EdrvInterruptHandler();
tEdrvRxBuffer RxBuffer;
tEdrvTxBuffer *pTxBuffer;
WORD wStatus;
DWORD dwTxStatus;
DWORD dwRxStatus;
WORD wCurRx;
BYTE *pbRxBuf;
unsigned int uiLength;
int iHandled = IRQ_HANDLED;
// printk("¤");
// read the interrupt status
wStatus = EDRV_REGW_READ(EDRV_REGW_INT_STATUS);
// acknowledge the interrupts
EDRV_REGW_WRITE(EDRV_REGW_INT_STATUS, wStatus);
if (wStatus == 0) {
iHandled = IRQ_NONE;
goto Exit;
}
// process tasks
if ((wStatus & (EDRV_REGW_INT_TER | EDRV_REGW_INT_TOK)) != 0) { // transmit interrupt
if (EdrvInstance_l.m_pbTxBuf == NULL) {
printk("%s Tx buffers currently not allocated\n",
__FUNCTION__);
goto Exit;
}
// read transmit status
dwTxStatus =
EDRV_REGDW_READ((EDRV_REGDW_TSD0 +
(EdrvInstance_l.m_uiCurTxDesc *
sizeof(DWORD))));
if ((dwTxStatus & (EDRV_REGDW_TSD_TOK | EDRV_REGDW_TSD_TABT | EDRV_REGDW_TSD_TUN)) != 0) { // transmit finished
EdrvInstance_l.m_uiCurTxDesc =
(EdrvInstance_l.m_uiCurTxDesc + 1) & 0x03;
pTxBuffer = EdrvInstance_l.m_pLastTransmittedTxBuffer;
EdrvInstance_l.m_pLastTransmittedTxBuffer = NULL;
if ((dwTxStatus & EDRV_REGDW_TSD_TOK) != 0) {
EDRV_COUNT_TX;
} else if ((dwTxStatus & EDRV_REGDW_TSD_TUN) != 0) {
EDRV_COUNT_TX_FUN;
} else { // assume EDRV_REGDW_TSD_TABT
EDRV_COUNT_TX_COL_RL;
}
// printk("T");
if (pTxBuffer != NULL) {
// call Tx handler of Data link layer
EdrvInstance_l.m_InitParam.
m_pfnTxHandler(pTxBuffer);
}
} else {
EDRV_COUNT_TX_ERR;
}
}
if ((wStatus & (EDRV_REGW_INT_RER | EDRV_REGW_INT_FOVW | EDRV_REGW_INT_RXOVW | EDRV_REGW_INT_PUN)) != 0) { // receive error interrupt
if ((wStatus & EDRV_REGW_INT_FOVW) != 0) {
EDRV_COUNT_RX_FOVW;
} else if ((wStatus & EDRV_REGW_INT_RXOVW) != 0) {
EDRV_COUNT_RX_OVW;
} else if ((wStatus & EDRV_REGW_INT_PUN) != 0) { // Packet underrun
EDRV_TRACE_RX_PUN(wStatus);
EDRV_COUNT_RX_PUN;
} else { /*if ((wStatus & EDRV_REGW_INT_RER) != 0) */
EDRV_TRACE_RX_ERR(wStatus);
EDRV_COUNT_RX_ERR;
}
// reinitialize Rx process
EdrvReinitRx();
}
if ((wStatus & EDRV_REGW_INT_ROK) != 0) { // receive interrupt
if (EdrvInstance_l.m_pbRxBuf == NULL) {
printk("%s Rx buffers currently not allocated\n",
__FUNCTION__);
goto Exit;
}
// read current offset in receive buffer
wCurRx =
(EDRV_REGW_READ(EDRV_REGW_CAPR) +
0x10) % EDRV_RX_BUFFER_LENGTH;
while ((EDRV_REGB_READ(EDRV_REGB_COMMAND) & EDRV_REGB_COMMAND_BUFE) == 0) { // frame available
// calculate pointer to current frame in receive buffer
pbRxBuf = EdrvInstance_l.m_pbRxBuf + wCurRx;
// read receive status DWORD
dwRxStatus = le32_to_cpu(*((DWORD *) pbRxBuf));
// calculate length of received frame
uiLength = dwRxStatus >> 16;
if (uiLength == 0xFFF0) { // frame is unfinished (maybe early Rx interrupt is active)
break;
}
if ((dwRxStatus & EDRV_RXSTAT_ROK) == 0) { // error occured while receiving this frame
// ignore it
if ((dwRxStatus & EDRV_RXSTAT_FAE) != 0) {
EDRV_COUNT_RX_FAE;
} else if ((dwRxStatus & EDRV_RXSTAT_CRC) != 0) {
EDRV_TRACE_RX_CRC(dwRxStatus);
EDRV_COUNT_RX_CRC;
} else {
EDRV_TRACE_RX_ERR(dwRxStatus);
EDRV_COUNT_RX_ERR;
}
// reinitialize Rx process
EdrvReinitRx();
break;
} else { // frame is OK
RxBuffer.m_BufferInFrame =
kEdrvBufferLastInFrame;
RxBuffer.m_uiRxMsgLen = uiLength - ETH_CRC_SIZE;
RxBuffer.m_pbBuffer =
pbRxBuf + sizeof(dwRxStatus);
// printk("R");
EDRV_COUNT_RX;
// call Rx handler of Data link layer
EdrvInstance_l.m_InitParam.
m_pfnRxHandler(&RxBuffer);
}
// calulate new offset (DWORD aligned)
wCurRx =
(WORD) ((wCurRx + uiLength + sizeof(dwRxStatus) +
3) & ~0x3);
EDRV_TRACE_CAPR(wCurRx - 0x10);
EDRV_REGW_WRITE(EDRV_REGW_CAPR, wCurRx - 0x10);
// reread current offset in receive buffer
wCurRx =
(EDRV_REGW_READ(EDRV_REGW_CAPR) +
0x10) % EDRV_RX_BUFFER_LENGTH;
}
}
if ((wStatus & EDRV_REGW_INT_SERR) != 0) { // PCI error
EDRV_COUNT_PCI_ERR;
}
if ((wStatus & EDRV_REGW_INT_TIMEOUT) != 0) { // Timeout
EDRV_COUNT_TIMEOUT;
}
Exit:
return iHandled;
}
//---------------------------------------------------------------------------
//
// Function: EdrvInitOne
//
// Description: initializes one PCI device
//
// Parameters: pPciDev = pointer to corresponding PCI device structure
// pId = PCI device ID
//
// Returns: (int) = error code
//
// State:
//
//---------------------------------------------------------------------------
static int EdrvInitOne(struct pci_dev *pPciDev, const struct pci_device_id *pId)
{
int iResult = 0;
DWORD dwTemp;
if (EdrvInstance_l.m_pPciDev != NULL) { // Edrv is already connected to a PCI device
printk("%s device %s discarded\n", __FUNCTION__,
pci_name(pPciDev));
iResult = -ENODEV;
goto Exit;
}
if (pPciDev->revision >= 0x20) {
printk
("%s device %s is an enhanced 8139C+ version, which is not supported\n",
__FUNCTION__, pci_name(pPciDev));
iResult = -ENODEV;
goto Exit;
}
EdrvInstance_l.m_pPciDev = pPciDev;
// enable device
printk("%s enable device\n", __FUNCTION__);
iResult = pci_enable_device(pPciDev);
if (iResult != 0) {
goto Exit;
}
if ((pci_resource_flags(pPciDev, 1) & IORESOURCE_MEM) == 0) {
iResult = -ENODEV;
goto Exit;
}
printk("%s request regions\n", __FUNCTION__);
iResult = pci_request_regions(pPciDev, DRV_NAME);
if (iResult != 0) {
goto Exit;
}
printk("%s ioremap\n", __FUNCTION__);
EdrvInstance_l.m_pIoAddr =
ioremap(pci_resource_start(pPciDev, 1),
pci_resource_len(pPciDev, 1));
if (EdrvInstance_l.m_pIoAddr == NULL) { // remap of controller's register space failed
iResult = -EIO;
goto Exit;
}
// enable PCI busmaster
printk("%s enable busmaster\n", __FUNCTION__);
pci_set_master(pPciDev);
// reset controller
printk("%s reset controller\n", __FUNCTION__);
EDRV_REGB_WRITE(EDRV_REGB_COMMAND, EDRV_REGB_COMMAND_RST);
// wait until reset has finished
for (iResult = 500; iResult > 0; iResult--) {
if ((EDRV_REGB_READ(EDRV_REGB_COMMAND) & EDRV_REGB_COMMAND_RST)
== 0) {
break;
}
schedule_timeout(10);
}
// check hardware version, i.e. chip ID
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_TCR);
if (((dwTemp & EDRV_REGDW_TCR_VER_MASK) != EDRV_REGDW_TCR_VER_C)
&& ((dwTemp & EDRV_REGDW_TCR_VER_MASK) != EDRV_REGDW_TCR_VER_D)) { // unsupported chip
printk("%s Unsupported chip! TCR = 0x%08lX\n", __FUNCTION__,
dwTemp);
iResult = -ENODEV;
goto Exit;
}
// disable interrupts
printk("%s disable interrupts\n", __FUNCTION__);
EDRV_REGW_WRITE(EDRV_REGW_INT_MASK, 0);
// acknowledge all pending interrupts
EDRV_REGW_WRITE(EDRV_REGW_INT_STATUS,
EDRV_REGW_READ(EDRV_REGW_INT_STATUS));
// install interrupt handler
printk("%s install interrupt handler\n", __FUNCTION__);
iResult =
request_irq(pPciDev->irq, TgtEthIsr, IRQF_SHARED,
DRV_NAME /*pPciDev->dev.name */ , pPciDev);
if (iResult != 0) {
goto Exit;
}
/*
// unlock configuration registers
printk("%s unlock configuration registers\n", __FUNCTION__);
EDRV_REGB_WRITE(EDRV_REGB_CMD9346, EDRV_REGB_CMD9346_UNLOCK);
// check if user specified a MAC address
printk("%s check specified MAC address\n", __FUNCTION__);
for (iResult = 0; iResult < 6; iResult++)
{
if (EdrvInstance_l.m_InitParam.m_abMyMacAddr[iResult] != 0)
{
printk("%s set local MAC address\n", __FUNCTION__);
// write this MAC address to controller
EDRV_REGDW_WRITE(EDRV_REGDW_IDR0,
le32_to_cpu(*((DWORD*)&EdrvInstance_l.m_InitParam.m_abMyMacAddr[0])));
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_IDR0);
EDRV_REGDW_WRITE(EDRV_REGDW_IDR4,
le32_to_cpu(*((DWORD*)&EdrvInstance_l.m_InitParam.m_abMyMacAddr[4])));
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_IDR4);
break;
}
}
iResult = 0;
// lock configuration registers
EDRV_REGB_WRITE(EDRV_REGB_CMD9346, EDRV_REGB_CMD9346_LOCK);
*/
// allocate buffers
printk("%s allocate buffers\n", __FUNCTION__);
EdrvInstance_l.m_pbTxBuf =
pci_alloc_consistent(pPciDev, EDRV_TX_BUFFER_SIZE,
&EdrvInstance_l.m_pTxBufDma);
if (EdrvInstance_l.m_pbTxBuf == NULL) {
iResult = -ENOMEM;
goto Exit;
}
EdrvInstance_l.m_pbRxBuf =
pci_alloc_consistent(pPciDev, EDRV_RX_BUFFER_SIZE,
&EdrvInstance_l.m_pRxBufDma);
if (EdrvInstance_l.m_pbRxBuf == NULL) {
iResult = -ENOMEM;
goto Exit;
}
// reset pointers for Tx buffers
printk("%s reset pointers fo Tx buffers\n", __FUNCTION__);
EDRV_REGDW_WRITE(EDRV_REGDW_TSAD0, 0);
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_TSAD0);
EDRV_REGDW_WRITE(EDRV_REGDW_TSAD1, 0);
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_TSAD1);
EDRV_REGDW_WRITE(EDRV_REGDW_TSAD2, 0);
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_TSAD2);
EDRV_REGDW_WRITE(EDRV_REGDW_TSAD3, 0);
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_TSAD3);
printk(" Command = 0x%02X\n",
(WORD) EDRV_REGB_READ(EDRV_REGB_COMMAND));
// set pointer for receive buffer in controller
printk("%s set pointer to Rx buffer\n", __FUNCTION__);
EDRV_REGDW_WRITE(EDRV_REGDW_RBSTART, EdrvInstance_l.m_pRxBufDma);
// enable transmitter and receiver
printk("%s enable Tx and Rx", __FUNCTION__);
EDRV_REGB_WRITE(EDRV_REGB_COMMAND,
(EDRV_REGB_COMMAND_RE | EDRV_REGB_COMMAND_TE));
printk(" Command = 0x%02X\n",
(WORD) EDRV_REGB_READ(EDRV_REGB_COMMAND));
// clear missed packet counter to enable Rx/Tx process
EDRV_REGDW_WRITE(EDRV_REGDW_MPC, 0);
// set transmit configuration register
printk("%s set Tx conf register", __FUNCTION__);
EDRV_REGDW_WRITE(EDRV_REGDW_TCR, EDRV_REGDW_TCR_DEF);
printk(" = 0x%08X\n", EDRV_REGDW_READ(EDRV_REGDW_TCR));
// set receive configuration register
printk("%s set Rx conf register", __FUNCTION__);
EDRV_REGDW_WRITE(EDRV_REGDW_RCR, EDRV_REGDW_RCR_DEF);
printk(" = 0x%08X\n", EDRV_REGDW_READ(EDRV_REGDW_RCR));
// reset multicast MAC address filter
EDRV_REGDW_WRITE(EDRV_REGDW_MAR0, 0);
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_MAR0);
EDRV_REGDW_WRITE(EDRV_REGDW_MAR4, 0);
dwTemp = EDRV_REGDW_READ(EDRV_REGDW_MAR4);
/*
// enable transmitter and receiver
printk("%s enable Tx and Rx", __FUNCTION__);
EDRV_REGB_WRITE(EDRV_REGB_COMMAND, (EDRV_REGB_COMMAND_RE | EDRV_REGB_COMMAND_TE));
printk(" Command = 0x%02X\n", (WORD) EDRV_REGB_READ(EDRV_REGB_COMMAND));
*/
// disable early interrupts
EDRV_REGW_WRITE(EDRV_REGW_MULINT, 0);
// enable interrupts
printk("%s enable interrupts\n", __FUNCTION__);
EDRV_REGW_WRITE(EDRV_REGW_INT_MASK, EDRV_REGW_INT_MASK_DEF);
Exit:
printk("%s finished with %d\n", __FUNCTION__, iResult);
return iResult;
}
//---------------------------------------------------------------------------
//
// Function: EdrvRemoveOne
//
// Description: shuts down one PCI device
//
// Parameters: pPciDev = pointer to corresponding PCI device structure
//
// Returns: (void)
//
// State:
//
//---------------------------------------------------------------------------
static void EdrvRemoveOne(struct pci_dev *pPciDev)
{
if (EdrvInstance_l.m_pPciDev != pPciDev) { // trying to remove unknown device
BUG_ON(EdrvInstance_l.m_pPciDev != pPciDev);
goto Exit;
}
// disable transmitter and receiver
EDRV_REGB_WRITE(EDRV_REGB_COMMAND, 0);
// disable interrupts
EDRV_REGW_WRITE(EDRV_REGW_INT_MASK, 0);
// remove interrupt handler
free_irq(pPciDev->irq, pPciDev);
// free buffers
if (EdrvInstance_l.m_pbTxBuf != NULL) {
pci_free_consistent(pPciDev, EDRV_TX_BUFFER_SIZE,
EdrvInstance_l.m_pbTxBuf,
EdrvInstance_l.m_pTxBufDma);
EdrvInstance_l.m_pbTxBuf = NULL;
}
if (EdrvInstance_l.m_pbRxBuf != NULL) {
pci_free_consistent(pPciDev, EDRV_RX_BUFFER_SIZE,
EdrvInstance_l.m_pbRxBuf,
EdrvInstance_l.m_pRxBufDma);
EdrvInstance_l.m_pbRxBuf = NULL;
}
// unmap controller's register space
if (EdrvInstance_l.m_pIoAddr != NULL) {
iounmap(EdrvInstance_l.m_pIoAddr);
}
// disable the PCI device
pci_disable_device(pPciDev);
// release memory regions
pci_release_regions(pPciDev);
EdrvInstance_l.m_pPciDev = NULL;
Exit:;
}
//---------------------------------------------------------------------------
//
// Function: EdrvCalcHash
//
// Description: function calculates the entry for the hash-table from MAC
// address
//
// Parameters: pbMAC_p - pointer to MAC address
//
// Returns: hash value
//
// State:
//
//---------------------------------------------------------------------------
#define HASH_BITS 6 // used bits in hash
#define CRC32_POLY 0x04C11DB6 //
//#define CRC32_POLY 0xEDB88320 //
// G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
static BYTE EdrvCalcHash(BYTE * pbMAC_p)
{
DWORD dwByteCounter;
DWORD dwBitCounter;
DWORD dwData;
DWORD dwCrc;
DWORD dwCarry;
BYTE *pbData;
BYTE bHash;
pbData = pbMAC_p;
// calculate crc32 value of mac address
dwCrc = 0xFFFFFFFF;
for (dwByteCounter = 0; dwByteCounter < 6; dwByteCounter++) {
dwData = *pbData;
pbData++;
for (dwBitCounter = 0; dwBitCounter < 8;
dwBitCounter++, dwData >>= 1) {
dwCarry = (((dwCrc >> 31) ^ dwData) & 1);
dwCrc = dwCrc << 1;
if (dwCarry != 0) {
dwCrc = (dwCrc ^ CRC32_POLY) | dwCarry;
}
}
}
// printk("MyCRC = 0x%08lX\n", dwCrc);
// only upper 6 bits (HASH_BITS) are used
// which point to specific bit in the hash registers
bHash = (BYTE) ((dwCrc >> (32 - HASH_BITS)) & 0x3f);
return bHash;
}
|