aboutsummaryrefslogtreecommitdiff
path: root/include/asm-frv/bitops.h
blob: f686b519878ed34ed5f557d1e40014f869116e53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/* bitops.h: bit operations for the Fujitsu FR-V CPUs
 *
 * For an explanation of how atomic ops work in this arch, see:
 *   Documentation/fujitsu/frv/atomic-ops.txt
 *
 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#ifndef _ASM_BITOPS_H
#define _ASM_BITOPS_H

#include <linux/config.h>
#include <linux/compiler.h>
#include <asm/byteorder.h>
#include <asm/system.h>
#include <asm/atomic.h>

#ifdef __KERNEL__

/*
 * ffz = Find First Zero in word. Undefined if no zero exists,
 * so code should check against ~0UL first..
 */
static inline unsigned long ffz(unsigned long word)
{
	unsigned long result = 0;

	while (word & 1) {
		result++;
		word >>= 1;
	}
	return result;
}

/*
 * clear_bit() doesn't provide any barrier for the compiler.
 */
#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

static inline int test_and_clear_bit(int nr, volatile void *addr)
{
	volatile unsigned long *ptr = addr;
	unsigned long mask = 1UL << (nr & 31);
	ptr += nr >> 5;
	return (atomic_test_and_ANDNOT_mask(mask, ptr) & mask) != 0;
}

static inline int test_and_set_bit(int nr, volatile void *addr)
{
	volatile unsigned long *ptr = addr;
	unsigned long mask = 1UL << (nr & 31);
	ptr += nr >> 5;
	return (atomic_test_and_OR_mask(mask, ptr) & mask) != 0;
}

static inline int test_and_change_bit(int nr, volatile void *addr)
{
	volatile unsigned long *ptr = addr;
	unsigned long mask = 1UL << (nr & 31);
	ptr += nr >> 5;
	return (atomic_test_and_XOR_mask(mask, ptr) & mask) != 0;
}

static inline void clear_bit(int nr, volatile void *addr)
{
	test_and_clear_bit(nr, addr);
}

static inline void set_bit(int nr, volatile void *addr)
{
	test_and_set_bit(nr, addr);
}

static inline void change_bit(int nr, volatile void * addr)
{
	test_and_change_bit(nr, addr);
}

static inline void __clear_bit(int nr, volatile void * addr)
{
	volatile unsigned long *a = addr;
	int mask;

	a += nr >> 5;
	mask = 1 << (nr & 31);
	*a &= ~mask;
}

static inline void __set_bit(int nr, volatile void * addr)
{
	volatile unsigned long *a = addr;
	int mask;

	a += nr >> 5;
	mask = 1 << (nr & 31);
	*a |= mask;
}

static inline void __change_bit(int nr, volatile void *addr)
{
	volatile unsigned long *a = addr;
	int mask;

	a += nr >> 5;
	mask = 1 << (nr & 31);
	*a ^= mask;
}

static inline int __test_and_clear_bit(int nr, volatile void * addr)
{
	volatile unsigned long *a = addr;
	int mask, retval;

	a += nr >> 5;
	mask = 1 << (nr & 31);
	retval = (mask & *a) != 0;
	*a &= ~mask;
	return retval;
}

static inline int __test_and_set_bit(int nr, volatile void * addr)
{
	volatile unsigned long *a = addr;
	int mask, retval;

	a += nr >> 5;
	mask = 1 << (nr & 31);
	retval = (mask & *a) != 0;
	*a |= mask;
	return retval;
}

static inline int __test_and_change_bit(int nr, volatile void * addr)
{
	volatile unsigned long *a = addr;
	int mask, retval;

	a += nr >> 5;
	mask = 1 << (nr & 31);
	retval = (mask & *a) != 0;
	*a ^= mask;
	return retval;
}

/*
 * This routine doesn't need to be atomic.
 */
static inline int __constant_test_bit(int nr, const volatile void * addr)
{
	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}

static inline int __test_bit(int nr, const volatile void * addr)
{
	int 	* a = (int *) addr;
	int	mask;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	return ((mask & *a) != 0);
}

#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
 __constant_test_bit((nr),(addr)) : \
 __test_bit((nr),(addr)))

extern int find_next_bit(const unsigned long *addr, int size, int offset);

#define find_first_bit(addr, size) find_next_bit(addr, size, 0)

#define find_first_zero_bit(addr, size) \
        find_next_zero_bit((addr), (size), 0)

static inline int find_next_zero_bit(const void *addr, int size, int offset)
{
	const unsigned long *p = ((const unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *(p++);
		tmp |= ~0UL >> (32-offset);
		if (size < 32)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size & ~31UL) {
		if (~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
found_middle:
	return result + ffz(tmp);
}

#define ffs(x) generic_ffs(x)
#define __ffs(x) (ffs(x) - 1)

/*
 * fls: find last bit set.
 */
#define fls(x)						\
({							\
	int bit;					\
							\
	asm("scan %1,gr0,%0" : "=r"(bit) : "r"(x));	\
							\
	bit ? 33 - bit : bit;				\
})
#define fls64(x)   generic_fls64(x)

/*
 * Every architecture must define this function. It's the fastest
 * way of searching a 140-bit bitmap where the first 100 bits are
 * unlikely to be set. It's guaranteed that at least one of the 140
 * bits is cleared.
 */
static inline int sched_find_first_bit(const unsigned long *b)
{
	if (unlikely(b[0]))
		return __ffs(b[0]);
	if (unlikely(b[1]))
		return __ffs(b[1]) + 32;
	if (unlikely(b[2]))
		return __ffs(b[2]) + 64;
	if (b[3])
		return __ffs(b[3]) + 96;
	return __ffs(b[4]) + 128;
}


/*
 * hweightN: returns the hamming weight (i.e. the number
 * of bits set) of a N-bit word
 */

#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)

#define ext2_set_bit(nr, addr)		test_and_set_bit  ((nr) ^ 0x18, (addr))
#define ext2_clear_bit(nr, addr)	test_and_clear_bit((nr) ^ 0x18, (addr))

#define ext2_set_bit_atomic(lock,nr,addr)	ext2_set_bit((nr), addr)
#define ext2_clear_bit_atomic(lock,nr,addr)	ext2_clear_bit((nr), addr)

static inline int ext2_test_bit(int nr, const volatile void * addr)
{
	const volatile unsigned char *ADDR = (const unsigned char *) addr;
	int mask;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	return ((mask & *ADDR) != 0);
}

#define ext2_find_first_zero_bit(addr, size) \
        ext2_find_next_zero_bit((addr), (size), 0)

static inline unsigned long ext2_find_next_zero_bit(const void *addr,
						    unsigned long size,
						    unsigned long offset)
{
	const unsigned long *p = ((const unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if(offset) {
		/* We hold the little endian value in tmp, but then the
		 * shift is illegal. So we could keep a big endian value
		 * in tmp, like this:
		 *
		 * tmp = __swab32(*(p++));
		 * tmp |= ~0UL >> (32-offset);
		 *
		 * but this would decrease preformance, so we change the
		 * shift:
		 */
		tmp = *(p++);
		tmp |= __swab32(~0UL >> (32-offset));
		if(size < 32)
			goto found_first;
		if(~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while(size & ~31UL) {
		if(~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if(!size)
		return result;
	tmp = *p;

found_first:
	/* tmp is little endian, so we would have to swab the shift,
	 * see above. But then we have to swab tmp below for ffz, so
	 * we might as well do this here.
	 */
	return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
	return result + ffz(__swab32(tmp));
}

/* Bitmap functions for the minix filesystem.  */
#define minix_test_and_set_bit(nr,addr)		ext2_set_bit(nr,addr)
#define minix_set_bit(nr,addr)			ext2_set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr)	ext2_clear_bit(nr,addr)
#define minix_test_bit(nr,addr)			ext2_test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size)	ext2_find_first_zero_bit(addr,size)

#endif /* __KERNEL__ */

#endif /* _ASM_BITOPS_H */