summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/softpipe/sp_tex_sample.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/drivers/softpipe/sp_tex_sample.c')
-rw-r--r--src/gallium/drivers/softpipe/sp_tex_sample.c916
1 files changed, 916 insertions, 0 deletions
diff --git a/src/gallium/drivers/softpipe/sp_tex_sample.c b/src/gallium/drivers/softpipe/sp_tex_sample.c
new file mode 100644
index 0000000000..2f82fd6abe
--- /dev/null
+++ b/src/gallium/drivers/softpipe/sp_tex_sample.c
@@ -0,0 +1,916 @@
+/**************************************************************************
+ *
+ * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+/**
+ * Texture sampling
+ *
+ * Authors:
+ * Brian Paul
+ */
+
+#include "sp_context.h"
+#include "sp_headers.h"
+#include "sp_surface.h"
+#include "sp_tex_sample.h"
+#include "sp_tile_cache.h"
+#include "pipe/p_context.h"
+#include "pipe/p_defines.h"
+#include "pipe/p_util.h"
+#include "tgsi/exec/tgsi_exec.h"
+
+
+/*
+ * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes
+ * see 1-pixel bands of improperly weighted linear-filtered textures.
+ * The tests/texwrap.c demo is a good test.
+ * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
+ * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
+ */
+#define FRAC(f) ((f) - ifloor(f))
+
+
+/**
+ * Linear interpolation macro
+ */
+#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) )
+
+
+/**
+ * Do 2D/biliner interpolation of float values.
+ * v00, v10, v01 and v11 are typically four texture samples in a square/box.
+ * a and b are the horizontal and vertical interpolants.
+ * It's important that this function is inlined when compiled with
+ * optimization! If we find that's not true on some systems, convert
+ * to a macro.
+ */
+static INLINE float
+lerp_2d(float a, float b,
+ float v00, float v10, float v01, float v11)
+{
+ const float temp0 = LERP(a, v00, v10);
+ const float temp1 = LERP(a, v01, v11);
+ return LERP(b, temp0, temp1);
+}
+
+
+/**
+ * If A is a signed integer, A % B doesn't give the right value for A < 0
+ * (in terms of texture repeat). Just casting to unsigned fixes that.
+ */
+#define REMAINDER(A, B) ((unsigned) (A) % (unsigned) (B))
+
+
+/**
+ * Apply texture coord wrapping mode and return integer texture index.
+ * \param wrapMode PIPE_TEX_WRAP_x
+ * \param s the texcoord
+ * \param size the texture image size
+ * \return integer texture index
+ */
+static INLINE int
+nearest_texcoord(unsigned wrapMode, float s, unsigned size)
+{
+ int i;
+ switch (wrapMode) {
+ case PIPE_TEX_WRAP_REPEAT:
+ /* s limited to [0,1) */
+ /* i limited to [0,size-1] */
+ i = ifloor(s * size);
+ i = REMAINDER(i, size);
+ return i;
+ case PIPE_TEX_WRAP_CLAMP:
+ /* s limited to [0,1] */
+ /* i limited to [0,size-1] */
+ if (s <= 0.0F)
+ i = 0;
+ else if (s >= 1.0F)
+ i = size - 1;
+ else
+ i = ifloor(s * size);
+ return i;
+ case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const float min = 1.0F / (2.0F * size);
+ const float max = 1.0F - min;
+ if (s < min)
+ i = 0;
+ else if (s > max)
+ i = size - 1;
+ else
+ i = ifloor(s * size);
+ }
+ return i;
+ case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [-1, size] */
+ const float min = -1.0F / (2.0F * size);
+ const float max = 1.0F - min;
+ if (s <= min)
+ i = -1;
+ else if (s >= max)
+ i = size;
+ else
+ i = ifloor(s * size);
+ }
+ return i;
+ case PIPE_TEX_WRAP_MIRROR_REPEAT:
+ {
+ const float min = 1.0F / (2.0F * size);
+ const float max = 1.0F - min;
+ const int flr = ifloor(s);
+ float u;
+ if (flr & 1)
+ u = 1.0F - (s - (float) flr);
+ else
+ u = s - (float) flr;
+ if (u < min)
+ i = 0;
+ else if (u > max)
+ i = size - 1;
+ else
+ i = ifloor(u * size);
+ }
+ return i;
+ case PIPE_TEX_WRAP_MIRROR_CLAMP:
+ {
+ /* s limited to [0,1] */
+ /* i limited to [0,size-1] */
+ const float u = FABSF(s);
+ if (u <= 0.0F)
+ i = 0;
+ else if (u >= 1.0F)
+ i = size - 1;
+ else
+ i = ifloor(u * size);
+ }
+ return i;
+ case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const float min = 1.0F / (2.0F * size);
+ const float max = 1.0F - min;
+ const float u = FABSF(s);
+ if (u < min)
+ i = 0;
+ else if (u > max)
+ i = size - 1;
+ else
+ i = ifloor(u * size);
+ }
+ return i;
+ case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const float min = -1.0F / (2.0F * size);
+ const float max = 1.0F - min;
+ const float u = FABSF(s);
+ if (u < min)
+ i = -1;
+ else if (u > max)
+ i = size;
+ else
+ i = ifloor(u * size);
+ }
+ return i;
+ default:
+ assert(0);
+ return 0;
+ }
+}
+
+
+/**
+ * Used to compute texel locations for linear sampling.
+ * \param wrapMode PIPE_TEX_WRAP_x
+ * \param s the texcoord
+ * \param size the texture image size
+ * \param i0 returns first texture index
+ * \param i1 returns second texture index (usually *i0 + 1)
+ * \param a returns blend factor/weight between texture indexes
+ */
+static INLINE void
+linear_texcoord(unsigned wrapMode, float s, unsigned size,
+ int *i0, int *i1, float *a)
+{
+ float u;
+ switch (wrapMode) {
+ case PIPE_TEX_WRAP_REPEAT:
+ u = s * size - 0.5F;
+ *i0 = REMAINDER(ifloor(u), size);
+ *i1 = REMAINDER(*i0 + 1, size);
+ break;
+ case PIPE_TEX_WRAP_CLAMP:
+ if (s <= 0.0F)
+ u = 0.0F;
+ else if (s >= 1.0F)
+ u = (float) size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = ifloor(u);
+ *i1 = *i0 + 1;
+ break;
+ case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
+ if (s <= 0.0F)
+ u = 0.0F;
+ else if (s >= 1.0F)
+ u = (float) size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = ifloor(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (int) size)
+ *i1 = size - 1;
+ break;
+ case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
+ {
+ const float min = -1.0F / (2.0F * size);
+ const float max = 1.0F - min;
+ if (s <= min)
+ u = min * size;
+ else if (s >= max)
+ u = max * size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = ifloor(u);
+ *i1 = *i0 + 1;
+ }
+ break;
+ case PIPE_TEX_WRAP_MIRROR_REPEAT:
+ {
+ const int flr = ifloor(s);
+ if (flr & 1)
+ u = 1.0F - (s - (float) flr);
+ else
+ u = s - (float) flr;
+ u = (u * size) - 0.5F;
+ *i0 = ifloor(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (int) size)
+ *i1 = size - 1;
+ }
+ break;
+ case PIPE_TEX_WRAP_MIRROR_CLAMP:
+ u = FABSF(s);
+ if (u >= 1.0F)
+ u = (float) size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = ifloor(u);
+ *i1 = *i0 + 1;
+ break;
+ case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
+ u = FABSF(s);
+ if (u >= 1.0F)
+ u = (float) size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = ifloor(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (int) size)
+ *i1 = size - 1;
+ break;
+ case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
+ {
+ const float min = -1.0F / (2.0F * size);
+ const float max = 1.0F - min;
+ u = FABSF(s);
+ if (u <= min)
+ u = min * size;
+ else if (u >= max)
+ u = max * size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = ifloor(u);
+ *i1 = *i0 + 1;
+ }
+ break;
+ default:
+ assert(0);
+ }
+ *a = FRAC(u);
+}
+
+
+static unsigned
+choose_cube_face(float rx, float ry, float rz, float *newS, float *newT)
+{
+ /*
+ major axis
+ direction target sc tc ma
+ ---------- ------------------------------- --- --- ---
+ +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
+ -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
+ +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
+ -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
+ +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
+ -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
+ */
+ const float arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz);
+ unsigned face;
+ float sc, tc, ma;
+
+ if (arx > ary && arx > arz) {
+ if (rx >= 0.0F) {
+ face = PIPE_TEX_FACE_POS_X;
+ sc = -rz;
+ tc = -ry;
+ ma = arx;
+ }
+ else {
+ face = PIPE_TEX_FACE_NEG_X;
+ sc = rz;
+ tc = -ry;
+ ma = arx;
+ }
+ }
+ else if (ary > arx && ary > arz) {
+ if (ry >= 0.0F) {
+ face = PIPE_TEX_FACE_POS_Y;
+ sc = rx;
+ tc = rz;
+ ma = ary;
+ }
+ else {
+ face = PIPE_TEX_FACE_NEG_Y;
+ sc = rx;
+ tc = -rz;
+ ma = ary;
+ }
+ }
+ else {
+ if (rz > 0.0F) {
+ face = PIPE_TEX_FACE_POS_Z;
+ sc = rx;
+ tc = -ry;
+ ma = arz;
+ }
+ else {
+ face = PIPE_TEX_FACE_NEG_Z;
+ sc = -rx;
+ tc = -ry;
+ ma = arz;
+ }
+ }
+
+ *newS = ( sc / ma + 1.0F ) * 0.5F;
+ *newT = ( tc / ma + 1.0F ) * 0.5F;
+
+ return face;
+}
+
+
+/**
+ * Examine the quad's texture coordinates to compute the partial
+ * derivatives w.r.t X and Y, then compute lambda (level of detail).
+ *
+ * This is only done for fragment shaders, not vertex shaders.
+ */
+static float
+compute_lambda(struct tgsi_sampler *sampler,
+ const float s[QUAD_SIZE],
+ const float t[QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ float lodbias)
+{
+ float rho, lambda;
+
+ assert(s);
+ {
+ float dsdx = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
+ float dsdy = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT];
+ dsdx = FABSF(dsdx);
+ dsdy = FABSF(dsdy);
+ rho = MAX2(dsdx, dsdy);
+ if (sampler->state->normalized_coords)
+ rho *= sampler->texture->width[0];
+ }
+ if (t) {
+ float dtdx = t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT];
+ float dtdy = t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT];
+ float max;
+ dtdx = FABSF(dtdx);
+ dtdy = FABSF(dtdy);
+ max = MAX2(dtdx, dtdy);
+ if (sampler->state->normalized_coords)
+ max *= sampler->texture->height[0];
+ rho = MAX2(rho, max);
+ }
+ if (p) {
+ float dpdx = p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT];
+ float dpdy = p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT];
+ float max;
+ dpdx = FABSF(dpdx);
+ dpdy = FABSF(dpdy);
+ max = MAX2(dpdx, dpdy);
+ if (sampler->state->normalized_coords)
+ max *= sampler->texture->depth[0];
+ rho = MAX2(rho, max);
+ }
+
+ lambda = LOG2(rho);
+ lambda += lodbias + sampler->state->lod_bias;
+ lambda = CLAMP(lambda, sampler->state->min_lod, sampler->state->max_lod);
+
+ return lambda;
+}
+
+
+/**
+ * Do several things here:
+ * 1. Compute lambda from the texcoords, if needed
+ * 2. Determine if we're minifying or magnifying
+ * 3. If minifying, choose mipmap levels
+ * 4. Return image filter to use within mipmap images
+ */
+static void
+choose_mipmap_levels(struct tgsi_sampler *sampler,
+ const float s[QUAD_SIZE],
+ const float t[QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ float lodbias,
+ unsigned *level0, unsigned *level1, float *levelBlend,
+ unsigned *imgFilter)
+{
+ if (sampler->state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) {
+ /* no mipmap selection needed */
+ *imgFilter = sampler->state->mag_img_filter;
+ *level0 = *level1 = (int) sampler->state->min_lod;
+ }
+ else {
+ float lambda;
+
+ if (1)
+ /* fragment shader */
+ lambda = compute_lambda(sampler, s, t, p, lodbias);
+ else
+ /* vertex shader */
+ lambda = lodbias; /* not really a bias, but absolute LOD */
+
+ if (lambda < 0.0) { /* XXX threshold depends on the filter */
+ /* magnifying */
+ *imgFilter = sampler->state->mag_img_filter;
+ *level0 = *level1 = 0;
+ }
+ else {
+ /* minifying */
+ *imgFilter = sampler->state->min_img_filter;
+
+ /* choose mipmap level(s) and compute the blend factor between them */
+ if (sampler->state->min_mip_filter == PIPE_TEX_MIPFILTER_NEAREST) {
+ /* Nearest mipmap level */
+ const int lvl = (int) (lambda + 0.5);
+ *level0 =
+ *level1 = CLAMP(lvl, 0, (int) sampler->texture->last_level);
+ }
+ else {
+ /* Linear interpolation between mipmap levels */
+ const int lvl = (int) lambda;
+ *level0 = CLAMP(lvl, 0, (int) sampler->texture->last_level);
+ *level1 = CLAMP(lvl + 1, 0, (int) sampler->texture->last_level);
+ *levelBlend = FRAC(lambda); /* blending weight between levels */
+ }
+ }
+ }
+}
+
+
+/**
+ * Get a texel from a texture, using the texture tile cache.
+ *
+ * \param face the cube face in 0..5
+ * \param level the mipmap level
+ * \param x the x coord of texel within 2D image
+ * \param y the y coord of texel within 2D image
+ * \param z which slice of a 3D texture
+ * \param rgba the quad to put the texel/color into
+ * \param j which element of the rgba quad to write to
+ *
+ * XXX maybe move this into sp_tile_cache.c and merge with the
+ * sp_get_cached_tile_tex() function. Also, get 4 texels instead of 1...
+ */
+static void
+get_texel(struct tgsi_sampler *sampler,
+ unsigned face, unsigned level, int x, int y, int z,
+ float rgba[NUM_CHANNELS][QUAD_SIZE], unsigned j)
+{
+ const int tx = x % TILE_SIZE;
+ const int ty = y % TILE_SIZE;
+ const struct softpipe_cached_tile *tile
+ = sp_get_cached_tile_tex(sampler->pipe, sampler->cache,
+ x, y, z, face, level);
+ rgba[0][j] = tile->data.color[ty][tx][0];
+ rgba[1][j] = tile->data.color[ty][tx][1];
+ rgba[2][j] = tile->data.color[ty][tx][2];
+ rgba[3][j] = tile->data.color[ty][tx][3];
+}
+
+
+/**
+ * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
+ * When we sampled the depth texture, the depth value was put into all
+ * RGBA channels. We look at the red channel here.
+ */
+static INLINE void
+shadow_compare(uint compare_func,
+ float rgba[NUM_CHANNELS][QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ uint j)
+{
+ int k;
+ switch (compare_func) {
+ case PIPE_FUNC_LESS:
+ k = p[j] < rgba[0][j];
+ break;
+ case PIPE_FUNC_LEQUAL:
+ k = p[j] <= rgba[0][j];
+ break;
+ case PIPE_FUNC_GREATER:
+ k = p[j] > rgba[0][j];
+ break;
+ case PIPE_FUNC_GEQUAL:
+ k = p[j] >= rgba[0][j];
+ break;
+ case PIPE_FUNC_EQUAL:
+ k = p[j] == rgba[0][j];
+ break;
+ case PIPE_FUNC_NOTEQUAL:
+ k = p[j] != rgba[0][j];
+ break;
+ case PIPE_FUNC_ALWAYS:
+ k = 1;
+ break;
+ case PIPE_FUNC_NEVER:
+ k = 0;
+ break;
+ default:
+ assert(0);
+ }
+
+ rgba[0][j] = rgba[1][j] = rgba[2][j] = (float) k;
+}
+
+
+/**
+ * Common code for sampling 1D/2D/cube textures.
+ * Could probably extend for 3D...
+ */
+static void
+sp_get_samples_2d_common(struct tgsi_sampler *sampler,
+ const float s[QUAD_SIZE],
+ const float t[QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ float lodbias,
+ float rgba[NUM_CHANNELS][QUAD_SIZE],
+ const unsigned faces[4])
+{
+ const uint compare_func = sampler->state->compare_func;
+ unsigned level0, level1, j, imgFilter;
+ int width, height;
+ float levelBlend;
+
+ choose_mipmap_levels(sampler, s, t, p, lodbias,
+ &level0, &level1, &levelBlend, &imgFilter);
+
+ if (sampler->state->normalized_coords) {
+ width = sampler->texture->width[level0];
+ height = sampler->texture->height[level0];
+ }
+ else {
+ width = height = 1;
+ }
+
+ assert(width > 0);
+
+ switch (imgFilter) {
+ case PIPE_TEX_FILTER_NEAREST:
+ for (j = 0; j < QUAD_SIZE; j++) {
+ int x = nearest_texcoord(sampler->state->wrap_s, s[j], width);
+ int y = nearest_texcoord(sampler->state->wrap_t, t[j], height);
+ get_texel(sampler, faces[j], level0, x, y, 0, rgba, j);
+ if (sampler->state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
+ shadow_compare(compare_func, rgba, p, j);
+ }
+
+ if (level0 != level1) {
+ /* get texels from second mipmap level and blend */
+ float rgba2[4][4];
+ unsigned c;
+ x = x / 2;
+ y = y / 2;
+ get_texel(sampler, faces[j], level1, x, y, 0, rgba2, j);
+ if (sampler->state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE){
+ shadow_compare(compare_func, rgba2, p, j);
+ }
+
+ for (c = 0; c < NUM_CHANNELS; c++) {
+ rgba[c][j] = LERP(levelBlend, rgba[c][j], rgba2[c][j]);
+ }
+ }
+ }
+ break;
+ case PIPE_TEX_FILTER_LINEAR:
+ for (j = 0; j < QUAD_SIZE; j++) {
+ float tx[4][4], a, b;
+ int x0, y0, x1, y1, c;
+ linear_texcoord(sampler->state->wrap_s, s[j], width, &x0, &x1, &a);
+ linear_texcoord(sampler->state->wrap_t, t[j], height, &y0, &y1, &b);
+ get_texel(sampler, faces[j], level0, x0, y0, 0, tx, 0);
+ get_texel(sampler, faces[j], level0, x1, y0, 0, tx, 1);
+ get_texel(sampler, faces[j], level0, x0, y1, 0, tx, 2);
+ get_texel(sampler, faces[j], level0, x1, y1, 0, tx, 3);
+ if (sampler->state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
+ shadow_compare(compare_func, tx, p, 0);
+ shadow_compare(compare_func, tx, p, 1);
+ shadow_compare(compare_func, tx, p, 2);
+ shadow_compare(compare_func, tx, p, 3);
+ }
+
+ for (c = 0; c < 4; c++) {
+ rgba[c][j] = lerp_2d(a, b, tx[c][0], tx[c][1], tx[c][2], tx[c][3]);
+ }
+
+ if (level0 != level1) {
+ /* get texels from second mipmap level and blend */
+ float rgba2[4][4];
+ x0 = x0 / 2;
+ y0 = y0 / 2;
+ x1 = x1 / 2;
+ y1 = y1 / 2;
+ get_texel(sampler, faces[j], level1, x0, y0, 0, tx, 0);
+ get_texel(sampler, faces[j], level1, x1, y0, 0, tx, 1);
+ get_texel(sampler, faces[j], level1, x0, y1, 0, tx, 2);
+ get_texel(sampler, faces[j], level1, x1, y1, 0, tx, 3);
+ if (sampler->state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE){
+ shadow_compare(compare_func, tx, p, 0);
+ shadow_compare(compare_func, tx, p, 1);
+ shadow_compare(compare_func, tx, p, 2);
+ shadow_compare(compare_func, tx, p, 3);
+ }
+
+ for (c = 0; c < 4; c++) {
+ rgba2[c][j] = lerp_2d(a, b,
+ tx[c][0], tx[c][1], tx[c][2], tx[c][3]);
+ }
+
+ for (c = 0; c < NUM_CHANNELS; c++) {
+ rgba[c][j] = LERP(levelBlend, rgba[c][j], rgba2[c][j]);
+ }
+ }
+ }
+ break;
+ default:
+ assert(0);
+ }
+}
+
+
+static void
+sp_get_samples_1d(struct tgsi_sampler *sampler,
+ const float s[QUAD_SIZE],
+ const float t[QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ float lodbias,
+ float rgba[NUM_CHANNELS][QUAD_SIZE])
+{
+ static const unsigned faces[4] = {0, 0, 0, 0};
+ static const float tzero[4] = {0, 0, 0, 0};
+ sp_get_samples_2d_common(sampler, s, tzero, NULL, lodbias, rgba, faces);
+}
+
+
+static void
+sp_get_samples_2d(struct tgsi_sampler *sampler,
+ const float s[QUAD_SIZE],
+ const float t[QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ float lodbias,
+ float rgba[NUM_CHANNELS][QUAD_SIZE])
+{
+ static const unsigned faces[4] = {0, 0, 0, 0};
+ sp_get_samples_2d_common(sampler, s, t, p, lodbias, rgba, faces);
+}
+
+
+static void
+sp_get_samples_3d(struct tgsi_sampler *sampler,
+ const float s[QUAD_SIZE],
+ const float t[QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ float lodbias,
+ float rgba[NUM_CHANNELS][QUAD_SIZE])
+{
+ /* get/map pipe_surfaces corresponding to 3D tex slices */
+ unsigned level0, level1, j, imgFilter;
+ int width, height, depth;
+ float levelBlend;
+ const uint face = 0;
+
+ choose_mipmap_levels(sampler, s, t, p, lodbias,
+ &level0, &level1, &levelBlend, &imgFilter);
+
+ if (sampler->state->normalized_coords) {
+ width = sampler->texture->width[level0];
+ height = sampler->texture->height[level0];
+ depth = sampler->texture->depth[level0];
+ }
+ else {
+ width = height = depth = 1;
+ }
+
+ assert(width > 0);
+ assert(height > 0);
+ assert(depth > 0);
+
+ switch (imgFilter) {
+ case PIPE_TEX_FILTER_NEAREST:
+ for (j = 0; j < QUAD_SIZE; j++) {
+ int x = nearest_texcoord(sampler->state->wrap_s, s[j], width);
+ int y = nearest_texcoord(sampler->state->wrap_t, t[j], height);
+ int z = nearest_texcoord(sampler->state->wrap_r, p[j], depth);
+ get_texel(sampler, face, level0, x, y, z, rgba, j);
+
+ if (level0 != level1) {
+ /* get texels from second mipmap level and blend */
+ float rgba2[4][4];
+ unsigned c;
+ x /= 2;
+ y /= 2;
+ z /= 2;
+ get_texel(sampler, face, level1, x, y, z, rgba2, j);
+ for (c = 0; c < NUM_CHANNELS; c++) {
+ rgba[c][j] = LERP(levelBlend, rgba2[c][j], rgba[c][j]);
+ }
+ }
+ }
+ break;
+ case PIPE_TEX_FILTER_LINEAR:
+ for (j = 0; j < QUAD_SIZE; j++) {
+ float texel0[4][4], texel1[4][4];
+ float xw, yw, zw; /* interpolation weights */
+ int x0, x1, y0, y1, z0, z1, c;
+ linear_texcoord(sampler->state->wrap_s, s[j], width, &x0, &x1, &xw);
+ linear_texcoord(sampler->state->wrap_t, t[j], height, &y0, &y1, &yw);
+ linear_texcoord(sampler->state->wrap_r, p[j], depth, &z0, &z1, &zw);
+ get_texel(sampler, face, level0, x0, y0, z0, texel0, 0);
+ get_texel(sampler, face, level0, x1, y0, z0, texel0, 1);
+ get_texel(sampler, face, level0, x0, y1, z0, texel0, 2);
+ get_texel(sampler, face, level0, x1, y1, z0, texel0, 3);
+ get_texel(sampler, face, level0, x0, y0, z1, texel1, 0);
+ get_texel(sampler, face, level0, x1, y0, z1, texel1, 1);
+ get_texel(sampler, face, level0, x0, y1, z1, texel1, 2);
+ get_texel(sampler, face, level0, x1, y1, z1, texel1, 3);
+
+ /* 3D lerp */
+ for (c = 0; c < 4; c++) {
+ float ctemp0[4][4], ctemp1[4][4];
+ ctemp0[c][j] = lerp_2d(xw, yw,
+ texel0[c][0], texel0[c][1],
+ texel0[c][2], texel0[c][3]);
+ ctemp1[c][j] = lerp_2d(xw, yw,
+ texel1[c][0], texel1[c][1],
+ texel1[c][2], texel1[c][3]);
+ rgba[c][j] = LERP(zw, ctemp0[c][j], ctemp1[c][j]);
+ }
+
+ if (level0 != level1) {
+ /* get texels from second mipmap level and blend */
+ float rgba2[4][4];
+ x0 /= 2;
+ y0 /= 2;
+ z0 /= 2;
+ x1 /= 2;
+ y1 /= 2;
+ z1 /= 2;
+ get_texel(sampler, face, level1, x0, y0, z0, texel0, 0);
+ get_texel(sampler, face, level1, x1, y0, z0, texel0, 1);
+ get_texel(sampler, face, level1, x0, y1, z0, texel0, 2);
+ get_texel(sampler, face, level1, x1, y1, z0, texel0, 3);
+ get_texel(sampler, face, level1, x0, y0, z1, texel1, 0);
+ get_texel(sampler, face, level1, x1, y0, z1, texel1, 1);
+ get_texel(sampler, face, level1, x0, y1, z1, texel1, 2);
+ get_texel(sampler, face, level1, x1, y1, z1, texel1, 3);
+
+ /* 3D lerp */
+ for (c = 0; c < 4; c++) {
+ float ctemp0[4][4], ctemp1[4][4];
+ ctemp0[c][j] = lerp_2d(xw, yw,
+ texel0[c][0], texel0[c][1],
+ texel0[c][2], texel0[c][3]);
+ ctemp1[c][j] = lerp_2d(xw, yw,
+ texel1[c][0], texel1[c][1],
+ texel1[c][2], texel1[c][3]);
+ rgba2[c][j] = LERP(zw, ctemp0[c][j], ctemp1[c][j]);
+ }
+
+ /* blend mipmap levels */
+ for (c = 0; c < NUM_CHANNELS; c++) {
+ rgba[c][j] = LERP(levelBlend, rgba[c][j], rgba2[c][j]);
+ }
+ }
+ }
+ break;
+ default:
+ assert(0);
+ }
+}
+
+
+static void
+sp_get_samples_cube(struct tgsi_sampler *sampler,
+ const float s[QUAD_SIZE],
+ const float t[QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ float lodbias,
+ float rgba[NUM_CHANNELS][QUAD_SIZE])
+{
+ unsigned faces[QUAD_SIZE], j;
+ float ssss[4], tttt[4];
+ for (j = 0; j < QUAD_SIZE; j++) {
+ faces[j] = choose_cube_face(s[j], t[j], p[j], ssss + j, tttt + j);
+ }
+ sp_get_samples_2d_common(sampler, ssss, tttt, NULL, lodbias, rgba, faces);
+}
+
+
+/**
+ * Called via tgsi_sampler::get_samples()
+ * Use the sampler's state setting to get a filtered RGBA value
+ * from the sampler's texture.
+ *
+ * XXX we can implement many versions of this function, each
+ * tightly coded for a specific combination of sampler state
+ * (nearest + repeat), (bilinear mipmap + clamp), etc.
+ *
+ * The update_samplers() function in st_atom_sampler.c could create
+ * a new tgsi_sampler object for each state combo it finds....
+ */
+void
+sp_get_samples(struct tgsi_sampler *sampler,
+ const float s[QUAD_SIZE],
+ const float t[QUAD_SIZE],
+ const float p[QUAD_SIZE],
+ float lodbias,
+ float rgba[NUM_CHANNELS][QUAD_SIZE])
+{
+ if (!sampler->texture)
+ return;
+
+ switch (sampler->texture->target) {
+ case PIPE_TEXTURE_1D:
+ sp_get_samples_1d(sampler, s, t, p, lodbias, rgba);
+ break;
+ case PIPE_TEXTURE_2D:
+ sp_get_samples_2d(sampler, s, t, p, lodbias, rgba);
+ break;
+ case PIPE_TEXTURE_3D:
+ sp_get_samples_3d(sampler, s, t, p, lodbias, rgba);
+ break;
+ case PIPE_TEXTURE_CUBE:
+ sp_get_samples_cube(sampler, s, t, p, lodbias, rgba);
+ break;
+ default:
+ assert(0);
+ }
+}
+