diff options
Diffstat (limited to 'src/glu/mesa/project.c')
-rw-r--r-- | src/glu/mesa/project.c | 525 |
1 files changed, 288 insertions, 237 deletions
diff --git a/src/glu/mesa/project.c b/src/glu/mesa/project.c index 6aa75a5d57..c8ab95992a 100644 --- a/src/glu/mesa/project.c +++ b/src/glu/mesa/project.c @@ -1,9 +1,9 @@ -/* $Id: project.c,v 1.2 1999/09/14 00:10:31 brianp Exp $ */ +/* $Id: project.c,v 1.3 2000/07/11 14:11:04 brianp Exp $ */ /* * Mesa 3-D graphics library - * Version: 3.1 - * Copyright (C) 1995-1999 Brian Paul + * Version: 3.3 + * Copyright (C) 1995-2000 Brian Paul * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public @@ -21,38 +21,6 @@ */ -/* - * $Log: project.c,v $ - * Revision 1.2 1999/09/14 00:10:31 brianp - * added gluUnProject4() - * - * Revision 1.1.1.1 1999/08/19 00:55:42 jtg - * Imported sources - * - * Revision 1.7 1999/01/03 03:23:15 brianp - * now using GLAPIENTRY and GLCALLBACK keywords (Ted Jump) - * - * Revision 1.6 1998/07/08 01:43:43 brianp - * new version of invert_matrix() (also in src/matrix.c) - * - * Revision 1.5 1997/07/24 01:28:44 brianp - * changed precompiled header symbol from PCH to PC_HEADER - * - * Revision 1.4 1997/05/28 02:29:38 brianp - * added support for precompiled headers (PCH), inserted APIENTRY keyword - * - * Revision 1.3 1997/04/11 23:22:42 brianp - * added divide by zero checks to gluProject() and gluUnproject() - * - * Revision 1.2 1997/01/29 19:05:29 brianp - * faster invert_matrix() function from Stephane Rehel - * - * Revision 1.1 1996/09/27 01:19:39 brianp - * Initial revision - * - */ - - #ifdef PC_HEADER #include "all.h" #else @@ -81,14 +49,18 @@ * in - the 4x1 vector * Output: out - the resulting 4x1 vector. */ -static void transform_point( GLdouble out[4], const GLdouble m[16], - const GLdouble in[4] ) +static void +transform_point(GLdouble out[4], const GLdouble m[16], const GLdouble in[4]) { #define M(row,col) m[col*4+row] - out[0] = M(0,0) * in[0] + M(0,1) * in[1] + M(0,2) * in[2] + M(0,3) * in[3]; - out[1] = M(1,0) * in[0] + M(1,1) * in[1] + M(1,2) * in[2] + M(1,3) * in[3]; - out[2] = M(2,0) * in[0] + M(2,1) * in[1] + M(2,2) * in[2] + M(2,3) * in[3]; - out[3] = M(3,0) * in[0] + M(3,1) * in[1] + M(3,2) * in[2] + M(3,3) * in[3]; + out[0] = + M(0, 0) * in[0] + M(0, 1) * in[1] + M(0, 2) * in[2] + M(0, 3) * in[3]; + out[1] = + M(1, 0) * in[0] + M(1, 1) * in[1] + M(1, 2) * in[2] + M(1, 3) * in[3]; + out[2] = + M(2, 0) * in[0] + M(2, 1) * in[1] + M(2, 2) * in[2] + M(2, 3) * in[3]; + out[3] = + M(3, 0) * in[0] + M(3, 1) * in[1] + M(3, 2) * in[2] + M(3, 3) * in[3]; #undef M } @@ -100,7 +72,8 @@ static void transform_point( GLdouble out[4], const GLdouble m[16], * Input: a, b - matrices to multiply * Output: product - product of a and b */ -static void matmul( GLdouble *product, const GLdouble *a, const GLdouble *b ) +static void +matmul(GLdouble * product, const GLdouble * a, const GLdouble * b) { /* This matmul was contributed by Thomas Malik */ GLdouble temp[16]; @@ -111,18 +84,29 @@ static void matmul( GLdouble *product, const GLdouble *a, const GLdouble *b ) #define T(row,col) temp[(col<<2)+row] /* i-te Zeile */ - for (i = 0; i < 4; i++) - { - T(i, 0) = A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, 3) * B(3, 0); - T(i, 1) = A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, 3) * B(3, 1); - T(i, 2) = A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, 3) * B(3, 2); - T(i, 3) = A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, 3) * B(3, 3); - } + for (i = 0; i < 4; i++) { + T(i, 0) = + A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, + 3) * + B(3, 0); + T(i, 1) = + A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, + 3) * + B(3, 1); + T(i, 2) = + A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, + 3) * + B(3, 2); + T(i, 3) = + A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, + 3) * + B(3, 3); + } #undef A #undef B #undef T - MEMCPY( product, temp, 16*sizeof(GLdouble) ); + MEMCPY(product, temp, 16 * sizeof(GLdouble)); } @@ -132,118 +116,175 @@ static void matmul( GLdouble *product, const GLdouble *a, const GLdouble *b ) * Code contributed by Jacques Leroy jle@star.be * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) */ -static GLboolean invert_matrix( const GLdouble *m, GLdouble *out ) +static GLboolean +invert_matrix(const GLdouble * m, GLdouble * out) { /* NB. OpenGL Matrices are COLUMN major. */ #define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; } #define MAT(m,r,c) (m)[(c)*4+(r)] - GLdouble wtmp[4][8]; - GLdouble m0, m1, m2, m3, s; - GLdouble *r0, *r1, *r2, *r3; - - r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; - - r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), - r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), - r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, - - r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), - r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), - r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, - - r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), - r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), - r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, - - r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), - r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), - r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; - - /* choose pivot - or die */ - if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); - if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); - if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); - if (0.0 == r0[0]) return GL_FALSE; - - /* eliminate first variable */ - m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; - s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; - s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; - s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; - s = r0[4]; - if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } - s = r0[5]; - if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } - s = r0[6]; - if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } - s = r0[7]; - if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } - - /* choose pivot - or die */ - if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); - if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); - if (0.0 == r1[1]) return GL_FALSE; - - /* eliminate second variable */ - m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; - r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; - r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; - s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } - s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } - s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } - s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } - - /* choose pivot - or die */ - if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); - if (0.0 == r2[2]) return GL_FALSE; - - /* eliminate third variable */ - m3 = r3[2]/r2[2]; - r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], - r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], - r3[7] -= m3 * r2[7]; - - /* last check */ - if (0.0 == r3[3]) return GL_FALSE; - - s = 1.0/r3[3]; /* now back substitute row 3 */ - r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; - - m2 = r2[3]; /* now back substitute row 2 */ - s = 1.0/r2[2]; - r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), - r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); - m1 = r1[3]; - r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, - r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; - m0 = r0[3]; - r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, - r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; - - m1 = r1[2]; /* now back substitute row 1 */ - s = 1.0/r1[1]; - r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), - r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); - m0 = r0[2]; - r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, - r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; - - m0 = r0[1]; /* now back substitute row 0 */ - s = 1.0/r0[0]; - r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), - r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); - - MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], - MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], - MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], - MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7], - MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], - MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], - MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], - MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; - - return GL_TRUE; + GLdouble wtmp[4][8]; + GLdouble m0, m1, m2, m3, s; + GLdouble *r0, *r1, *r2, *r3; + + r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; + + r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1), + r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3), + r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, + r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1), + r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3), + r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, + r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1), + r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3), + r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, + r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1), + r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3), + r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; + + /* choose pivot - or die */ + if (fabs(r3[0]) > fabs(r2[0])) + SWAP_ROWS(r3, r2); + if (fabs(r2[0]) > fabs(r1[0])) + SWAP_ROWS(r2, r1); + if (fabs(r1[0]) > fabs(r0[0])) + SWAP_ROWS(r1, r0); + if (0.0 == r0[0]) + return GL_FALSE; + + /* eliminate first variable */ + m1 = r1[0] / r0[0]; + m2 = r2[0] / r0[0]; + m3 = r3[0] / r0[0]; + s = r0[1]; + r1[1] -= m1 * s; + r2[1] -= m2 * s; + r3[1] -= m3 * s; + s = r0[2]; + r1[2] -= m1 * s; + r2[2] -= m2 * s; + r3[2] -= m3 * s; + s = r0[3]; + r1[3] -= m1 * s; + r2[3] -= m2 * s; + r3[3] -= m3 * s; + s = r0[4]; + if (s != 0.0) { + r1[4] -= m1 * s; + r2[4] -= m2 * s; + r3[4] -= m3 * s; + } + s = r0[5]; + if (s != 0.0) { + r1[5] -= m1 * s; + r2[5] -= m2 * s; + r3[5] -= m3 * s; + } + s = r0[6]; + if (s != 0.0) { + r1[6] -= m1 * s; + r2[6] -= m2 * s; + r3[6] -= m3 * s; + } + s = r0[7]; + if (s != 0.0) { + r1[7] -= m1 * s; + r2[7] -= m2 * s; + r3[7] -= m3 * s; + } + + /* choose pivot - or die */ + if (fabs(r3[1]) > fabs(r2[1])) + SWAP_ROWS(r3, r2); + if (fabs(r2[1]) > fabs(r1[1])) + SWAP_ROWS(r2, r1); + if (0.0 == r1[1]) + return GL_FALSE; + + /* eliminate second variable */ + m2 = r2[1] / r1[1]; + m3 = r3[1] / r1[1]; + r2[2] -= m2 * r1[2]; + r3[2] -= m3 * r1[2]; + r2[3] -= m2 * r1[3]; + r3[3] -= m3 * r1[3]; + s = r1[4]; + if (0.0 != s) { + r2[4] -= m2 * s; + r3[4] -= m3 * s; + } + s = r1[5]; + if (0.0 != s) { + r2[5] -= m2 * s; + r3[5] -= m3 * s; + } + s = r1[6]; + if (0.0 != s) { + r2[6] -= m2 * s; + r3[6] -= m3 * s; + } + s = r1[7]; + if (0.0 != s) { + r2[7] -= m2 * s; + r3[7] -= m3 * s; + } + + /* choose pivot - or die */ + if (fabs(r3[2]) > fabs(r2[2])) + SWAP_ROWS(r3, r2); + if (0.0 == r2[2]) + return GL_FALSE; + + /* eliminate third variable */ + m3 = r3[2] / r2[2]; + r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], + r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; + + /* last check */ + if (0.0 == r3[3]) + return GL_FALSE; + + s = 1.0 / r3[3]; /* now back substitute row 3 */ + r3[4] *= s; + r3[5] *= s; + r3[6] *= s; + r3[7] *= s; + + m2 = r2[3]; /* now back substitute row 2 */ + s = 1.0 / r2[2]; + r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), + r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); + m1 = r1[3]; + r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, + r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; + m0 = r0[3]; + r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, + r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; + + m1 = r1[2]; /* now back substitute row 1 */ + s = 1.0 / r1[1]; + r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), + r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); + m0 = r0[2]; + r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, + r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; + + m0 = r0[1]; /* now back substitute row 0 */ + s = 1.0 / r0[0]; + r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), + r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); + + MAT(out, 0, 0) = r0[4]; + MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6]; + MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4]; + MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6]; + MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4]; + MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6]; + MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4]; + MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6]; + MAT(out, 3, 3) = r3[7]; + + return GL_TRUE; #undef MAT #undef SWAP_ROWS @@ -252,63 +293,70 @@ static GLboolean invert_matrix( const GLdouble *m, GLdouble *out ) /* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */ -GLint GLAPIENTRY gluProject(GLdouble objx,GLdouble objy,GLdouble objz, - const GLdouble model[16],const GLdouble proj[16], - const GLint viewport[4], - GLdouble *winx,GLdouble *winy,GLdouble *winz) +GLint GLAPIENTRY +gluProject(GLdouble objx, GLdouble objy, GLdouble objz, + const GLdouble model[16], const GLdouble proj[16], + const GLint viewport[4], + GLdouble * winx, GLdouble * winy, GLdouble * winz) { - /* matrice de transformation */ - GLdouble in[4],out[4]; - - /* initilise la matrice et le vecteur a transformer */ - in[0]=objx; in[1]=objy; in[2]=objz; in[3]=1.0; - transform_point(out,model,in); - transform_point(in,proj,out); - - /* d'ou le resultat normalise entre -1 et 1*/ - if (in[3]==0.0) - return GL_FALSE; - - in[0]/=in[3]; in[1]/=in[3]; in[2]/=in[3]; - - /* en coordonnees ecran */ - *winx = viewport[0]+(1+in[0])*viewport[2]/2; - *winy = viewport[1]+(1+in[1])*viewport[3]/2; - /* entre 0 et 1 suivant z */ - *winz = (1+in[2])/2; - return GL_TRUE; + /* matrice de transformation */ + GLdouble in[4], out[4]; + + /* initilise la matrice et le vecteur a transformer */ + in[0] = objx; + in[1] = objy; + in[2] = objz; + in[3] = 1.0; + transform_point(out, model, in); + transform_point(in, proj, out); + + /* d'ou le resultat normalise entre -1 et 1 */ + if (in[3] == 0.0) + return GL_FALSE; + + in[0] /= in[3]; + in[1] /= in[3]; + in[2] /= in[3]; + + /* en coordonnees ecran */ + *winx = viewport[0] + (1 + in[0]) * viewport[2] / 2; + *winy = viewport[1] + (1 + in[1]) * viewport[3] / 2; + /* entre 0 et 1 suivant z */ + *winz = (1 + in[2]) / 2; + return GL_TRUE; } /* transformation du point ecran (winx,winy,winz) en point objet */ -GLint GLAPIENTRY gluUnProject(GLdouble winx,GLdouble winy,GLdouble winz, - const GLdouble model[16],const GLdouble proj[16], - const GLint viewport[4], - GLdouble *objx,GLdouble *objy,GLdouble *objz) +GLint GLAPIENTRY +gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, + const GLdouble model[16], const GLdouble proj[16], + const GLint viewport[4], + GLdouble * objx, GLdouble * objy, GLdouble * objz) { - /* matrice de transformation */ - GLdouble m[16], A[16]; - GLdouble in[4],out[4]; - - /* transformation coordonnees normalisees entre -1 et 1 */ - in[0]=(winx-viewport[0])*2/viewport[2] - 1.0; - in[1]=(winy-viewport[1])*2/viewport[3] - 1.0; - in[2]=2*winz - 1.0; - in[3]=1.0; - - /* calcul transformation inverse */ - matmul(A,proj,model); - invert_matrix(A,m); - - /* d'ou les coordonnees objets */ - transform_point(out,m,in); - if (out[3]==0.0) - return GL_FALSE; - *objx=out[0]/out[3]; - *objy=out[1]/out[3]; - *objz=out[2]/out[3]; - return GL_TRUE; + /* matrice de transformation */ + GLdouble m[16], A[16]; + GLdouble in[4], out[4]; + + /* transformation coordonnees normalisees entre -1 et 1 */ + in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; + in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; + in[2] = 2 * winz - 1.0; + in[3] = 1.0; + + /* calcul transformation inverse */ + matmul(A, proj, model); + invert_matrix(A, m); + + /* d'ou les coordonnees objets */ + transform_point(out, m, in); + if (out[3] == 0.0) + return GL_FALSE; + *objx = out[0] / out[3]; + *objy = out[1] / out[3]; + *objz = out[2] / out[3]; + return GL_TRUE; } @@ -316,36 +364,39 @@ GLint GLAPIENTRY gluUnProject(GLdouble winx,GLdouble winy,GLdouble winz, * New in GLU 1.3 * This is like gluUnProject but also takes near and far DepthRange values. */ +#ifdef GLU_VERSION_1_3 GLint GLAPIENTRY -gluUnProject4( GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw, - const GLdouble modelMatrix[16], - const GLdouble projMatrix[16], - const GLint viewport[4], - GLclampd nearZ, GLclampd farZ, - GLdouble *objx, GLdouble *objy, GLdouble *objz, GLdouble *objw ) +gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw, + const GLdouble modelMatrix[16], + const GLdouble projMatrix[16], + const GLint viewport[4], + GLclampd nearZ, GLclampd farZ, + GLdouble * objx, GLdouble * objy, GLdouble * objz, + GLdouble * objw) { - /* matrice de transformation */ - GLdouble m[16], A[16]; - GLdouble in[4],out[4]; - GLdouble z = nearZ + winz * (farZ - nearZ); - - /* transformation coordonnees normalisees entre -1 et 1 */ - in[0] = (winx-viewport[0])*2/viewport[2] - 1.0; - in[1] = (winy-viewport[1])*2/viewport[3] - 1.0; - in[2] = 2.0 * z - 1.0; - in[3] = clipw; - - /* calcul transformation inverse */ - matmul(A,projMatrix,modelMatrix); - invert_matrix(A,m); - - /* d'ou les coordonnees objets */ - transform_point(out,m,in); - if (out[3]==0.0) - return GL_FALSE; - *objx=out[0]/out[3]; - *objy=out[1]/out[3]; - *objz=out[2]/out[3]; - *objw=out[3]; - return GL_TRUE; + /* matrice de transformation */ + GLdouble m[16], A[16]; + GLdouble in[4], out[4]; + GLdouble z = nearZ + winz * (farZ - nearZ); + + /* transformation coordonnees normalisees entre -1 et 1 */ + in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; + in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; + in[2] = 2.0 * z - 1.0; + in[3] = clipw; + + /* calcul transformation inverse */ + matmul(A, projMatrix, modelMatrix); + invert_matrix(A, m); + + /* d'ou les coordonnees objets */ + transform_point(out, m, in); + if (out[3] == 0.0) + return GL_FALSE; + *objx = out[0] / out[3]; + *objy = out[1] / out[3]; + *objz = out[2] / out[3]; + *objw = out[3]; + return GL_TRUE; } +#endif |