summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/mesa/drivers/dri/r300/Makefile2
-rw-r--r--src/mesa/drivers/dri/r300/r300_fragprog.c2251
-rw-r--r--src/mesa/drivers/dri/r300/r300_fragprog.h20
-rw-r--r--src/mesa/drivers/dri/r300/r300_fragprog_emit.c2232
-rw-r--r--src/mesa/drivers/dri/r300/radeon_program.c151
-rw-r--r--src/mesa/drivers/dri/r300/radeon_program.h110
6 files changed, 2564 insertions, 2202 deletions
diff --git a/src/mesa/drivers/dri/r300/Makefile b/src/mesa/drivers/dri/r300/Makefile
index 5b2bd0bc2b..7cd5647064 100644
--- a/src/mesa/drivers/dri/r300/Makefile
+++ b/src/mesa/drivers/dri/r300/Makefile
@@ -37,8 +37,10 @@ DRIVER_SOURCES = \
r300_texmem.c \
r300_tex.c \
r300_texstate.c \
+ radeon_program.c \
r300_vertprog.c \
r300_fragprog.c \
+ r300_fragprog_emit.c \
r500_fragprog.c \
r300_shader.c \
r300_emit.c \
diff --git a/src/mesa/drivers/dri/r300/r300_fragprog.c b/src/mesa/drivers/dri/r300/r300_fragprog.c
index 9d7a8c6570..94cb11afec 100644
--- a/src/mesa/drivers/dri/r300/r300_fragprog.c
+++ b/src/mesa/drivers/dri/r300/r300_fragprog.c
@@ -28,16 +28,14 @@
/**
* \file
*
- * \author Ben Skeggs <darktama@iinet.net.au>
+ * Fragment program compiler. Perform transformations on the intermediate
+ * \ref radeon_program representation (which is essentially the Mesa
+ * program representation plus the notion of clauses) until the program
+ * is in a form where we can translate it more or less directly into
+ * machine-readable form.
*
+ * \author Ben Skeggs <darktama@iinet.net.au>
* \author Jerome Glisse <j.glisse@gmail.com>
- *
- * \todo Depth write, WPOS/FOGC inputs
- *
- * \todo FogOption
- *
- * \todo Verify results of opcodes for accuracy, I've only checked them in
- * specific cases.
*/
#include "glheader.h"
@@ -49,2047 +47,46 @@
#include "r300_context.h"
#include "r300_fragprog.h"
-#include "r300_reg.h"
#include "r300_state.h"
-/* Mapping Mesa registers to R300 temporaries */
-struct reg_acc {
- int reg; /* Assigned hw temp */
- unsigned int refcount; /* Number of uses by mesa program */
-};
-
-/**
- * Describe the current lifetime information for an R300 temporary
- */
-struct reg_lifetime {
- /* Index of the first slot where this register is free in the sense
- that it can be used as a new destination register.
- This is -1 if the register has been assigned to a Mesa register
- and the last access to the register has not yet been emitted */
- int free;
-
- /* Index of the first slot where this register is currently reserved.
- This is used to stop e.g. a scalar operation from being moved
- before the allocation time of a register that was first allocated
- for a vector operation. */
- int reserved;
-
- /* Index of the first slot in which the register can be used as a
- source without losing the value that is written by the last
- emitted instruction that writes to the register */
- int vector_valid;
- int scalar_valid;
-
- /* Index to the slot where the register was last read.
- This is also the first slot in which the register may be written again */
- int vector_lastread;
- int scalar_lastread;
-};
-
-/**
- * Store usage information about an ALU instruction slot during the
- * compilation of a fragment program.
- */
-#define SLOT_SRC_VECTOR (1<<0)
-#define SLOT_SRC_SCALAR (1<<3)
-#define SLOT_SRC_BOTH (SLOT_SRC_VECTOR | SLOT_SRC_SCALAR)
-#define SLOT_OP_VECTOR (1<<16)
-#define SLOT_OP_SCALAR (1<<17)
-#define SLOT_OP_BOTH (SLOT_OP_VECTOR | SLOT_OP_SCALAR)
-
-struct r300_pfs_compile_slot {
- /* Bitmask indicating which parts of the slot are used, using SLOT_ constants
- defined above */
- unsigned int used;
-
- /* Selected sources */
- int vsrc[3];
- int ssrc[3];
-};
-
-/**
- * Store information during compilation of fragment programs.
- */
-struct r300_pfs_compile_state {
- r300ContextPtr r300;
- struct r300_fragment_program *fp;
-
- int nrslots; /* number of ALU slots used so far */
-
- /* Track which (parts of) slots are already filled with instructions */
- struct r300_pfs_compile_slot slot[PFS_MAX_ALU_INST];
-
- /* Track the validity of R300 temporaries */
- struct reg_lifetime hwtemps[PFS_NUM_TEMP_REGS];
-
- /* Used to map Mesa's inputs/temps onto hardware temps */
- int temp_in_use;
- struct reg_acc temps[PFS_NUM_TEMP_REGS];
- struct reg_acc inputs[32]; /* don't actually need 32... */
-
- /* Track usage of hardware temps, for register allocation,
- * indirection detection, etc. */
- GLuint used_in_node;
- GLuint dest_in_node;
-};
-
-
-/*
- * Usefull macros and values
- */
-#define ERROR(fmt, args...) do { \
- fprintf(stderr, "%s::%s(): " fmt "\n", \
- __FILE__, __FUNCTION__, ##args); \
- fp->error = GL_TRUE; \
- } while(0)
-
-#define PFS_INVAL 0xFFFFFFFF
-#define COMPILE_STATE \
- struct r300_fragment_program *fp = cs->fp; \
- struct r300_fragment_program_code *code = &fp->code; \
- (void)code
-
-#define SWIZZLE_XYZ 0
-#define SWIZZLE_XXX 1
-#define SWIZZLE_YYY 2
-#define SWIZZLE_ZZZ 3
-#define SWIZZLE_WWW 4
-#define SWIZZLE_YZX 5
-#define SWIZZLE_ZXY 6
-#define SWIZZLE_WZY 7
-#define SWIZZLE_111 8
-#define SWIZZLE_000 9
-#define SWIZZLE_HHH 10
-
-#define swizzle(r, x, y, z, w) do_swizzle(cs, r, \
- ((SWIZZLE_##x<<0)| \
- (SWIZZLE_##y<<3)| \
- (SWIZZLE_##z<<6)| \
- (SWIZZLE_##w<<9)), \
- 0)
-
-#define REG_TYPE_INPUT 0
-#define REG_TYPE_OUTPUT 1
-#define REG_TYPE_TEMP 2
-#define REG_TYPE_CONST 3
-
-#define REG_TYPE_SHIFT 0
-#define REG_INDEX_SHIFT 2
-#define REG_VSWZ_SHIFT 8
-#define REG_SSWZ_SHIFT 13
-#define REG_NEGV_SHIFT 18
-#define REG_NEGS_SHIFT 19
-#define REG_ABS_SHIFT 20
-#define REG_NO_USE_SHIFT 21 // Hack for refcounting
-#define REG_VALID_SHIFT 22 // Does the register contain a defined value?
-#define REG_BUILTIN_SHIFT 23 // Is it a builtin (like all zero/all one)?
-
-#define REG_TYPE_MASK (0x03 << REG_TYPE_SHIFT)
-#define REG_INDEX_MASK (0x3F << REG_INDEX_SHIFT)
-#define REG_VSWZ_MASK (0x1F << REG_VSWZ_SHIFT)
-#define REG_SSWZ_MASK (0x1F << REG_SSWZ_SHIFT)
-#define REG_NEGV_MASK (0x01 << REG_NEGV_SHIFT)
-#define REG_NEGS_MASK (0x01 << REG_NEGS_SHIFT)
-#define REG_ABS_MASK (0x01 << REG_ABS_SHIFT)
-#define REG_NO_USE_MASK (0x01 << REG_NO_USE_SHIFT)
-#define REG_VALID_MASK (0x01 << REG_VALID_SHIFT)
-#define REG_BUILTIN_MASK (0x01 << REG_BUILTIN_SHIFT)
-
-#define REG(type, index, vswz, sswz, nouse, valid, builtin) \
- (((type << REG_TYPE_SHIFT) & REG_TYPE_MASK) | \
- ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK) | \
- ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK) | \
- ((valid << REG_VALID_SHIFT) & REG_VALID_MASK) | \
- ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK) | \
- ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK) | \
- ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
-#define REG_GET_TYPE(reg) \
- ((reg & REG_TYPE_MASK) >> REG_TYPE_SHIFT)
-#define REG_GET_INDEX(reg) \
- ((reg & REG_INDEX_MASK) >> REG_INDEX_SHIFT)
-#define REG_GET_VSWZ(reg) \
- ((reg & REG_VSWZ_MASK) >> REG_VSWZ_SHIFT)
-#define REG_GET_SSWZ(reg) \
- ((reg & REG_SSWZ_MASK) >> REG_SSWZ_SHIFT)
-#define REG_GET_NO_USE(reg) \
- ((reg & REG_NO_USE_MASK) >> REG_NO_USE_SHIFT)
-#define REG_GET_VALID(reg) \
- ((reg & REG_VALID_MASK) >> REG_VALID_SHIFT)
-#define REG_GET_BUILTIN(reg) \
- ((reg & REG_BUILTIN_MASK) >> REG_BUILTIN_SHIFT)
-#define REG_SET_TYPE(reg, type) \
- reg = ((reg & ~REG_TYPE_MASK) | \
- ((type << REG_TYPE_SHIFT) & REG_TYPE_MASK))
-#define REG_SET_INDEX(reg, index) \
- reg = ((reg & ~REG_INDEX_MASK) | \
- ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK))
-#define REG_SET_VSWZ(reg, vswz) \
- reg = ((reg & ~REG_VSWZ_MASK) | \
- ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK))
-#define REG_SET_SSWZ(reg, sswz) \
- reg = ((reg & ~REG_SSWZ_MASK) | \
- ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
-#define REG_SET_NO_USE(reg, nouse) \
- reg = ((reg & ~REG_NO_USE_MASK) | \
- ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK))
-#define REG_SET_VALID(reg, valid) \
- reg = ((reg & ~REG_VALID_MASK) | \
- ((valid << REG_VALID_SHIFT) & REG_VALID_MASK))
-#define REG_SET_BUILTIN(reg, builtin) \
- reg = ((reg & ~REG_BUILTIN_MASK) | \
- ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK))
-#define REG_ABS(reg) \
- reg = (reg | REG_ABS_MASK)
-#define REG_NEGV(reg) \
- reg = (reg | REG_NEGV_MASK)
-#define REG_NEGS(reg) \
- reg = (reg | REG_NEGS_MASK)
-
-#define NOP_INST0 ( \
- (R300_ALU_OUTC_MAD) | \
- (R300_ALU_ARGC_ZERO << R300_ALU_ARG0C_SHIFT) | \
- (R300_ALU_ARGC_ZERO << R300_ALU_ARG1C_SHIFT) | \
- (R300_ALU_ARGC_ZERO << R300_ALU_ARG2C_SHIFT))
-#define NOP_INST1 ( \
- ((0 | SRC_CONST) << R300_ALU_SRC0C_SHIFT) | \
- ((0 | SRC_CONST) << R300_ALU_SRC1C_SHIFT) | \
- ((0 | SRC_CONST) << R300_ALU_SRC2C_SHIFT))
-#define NOP_INST2 ( \
- (R300_ALU_OUTA_MAD) | \
- (R300_ALU_ARGA_ZERO << R300_ALU_ARG0A_SHIFT) | \
- (R300_ALU_ARGA_ZERO << R300_ALU_ARG1A_SHIFT) | \
- (R300_ALU_ARGA_ZERO << R300_ALU_ARG2A_SHIFT))
-#define NOP_INST3 ( \
- ((0 | SRC_CONST) << R300_ALU_SRC0A_SHIFT) | \
- ((0 | SRC_CONST) << R300_ALU_SRC1A_SHIFT) | \
- ((0 | SRC_CONST) << R300_ALU_SRC2A_SHIFT))
-
-
-/*
- * Datas structures for fragment program generation
- */
-
-/* description of r300 native hw instructions */
-static const struct {
- const char *name;
- int argc;
- int v_op;
- int s_op;
-} r300_fpop[] = {
- /* *INDENT-OFF* */
- {"MAD", 3, R300_ALU_OUTC_MAD, R300_ALU_OUTA_MAD},
- {"DP3", 2, R300_ALU_OUTC_DP3, R300_ALU_OUTA_DP4},
- {"DP4", 2, R300_ALU_OUTC_DP4, R300_ALU_OUTA_DP4},
- {"MIN", 2, R300_ALU_OUTC_MIN, R300_ALU_OUTA_MIN},
- {"MAX", 2, R300_ALU_OUTC_MAX, R300_ALU_OUTA_MAX},
- {"CMP", 3, R300_ALU_OUTC_CMP, R300_ALU_OUTA_CMP},
- {"FRC", 1, R300_ALU_OUTC_FRC, R300_ALU_OUTA_FRC},
- {"EX2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_EX2},
- {"LG2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_LG2},
- {"RCP", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RCP},
- {"RSQ", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RSQ},
- {"REPL_ALPHA", 1, R300_ALU_OUTC_REPL_ALPHA, PFS_INVAL},
- {"CMPH", 3, R300_ALU_OUTC_CMPH, PFS_INVAL},
- /* *INDENT-ON* */
-};
-
-/* vector swizzles r300 can support natively, with a couple of
- * cases we handle specially
- *
- * REG_VSWZ/REG_SSWZ is an index into this table
- */
-
-/* mapping from SWIZZLE_* to r300 native values for scalar insns */
-#define SWIZZLE_HALF 6
-
-#define MAKE_SWZ3(x, y, z) (MAKE_SWIZZLE4(SWIZZLE_##x, \
- SWIZZLE_##y, \
- SWIZZLE_##z, \
- SWIZZLE_ZERO))
-/* native swizzles */
-static const struct r300_pfs_swizzle {
- GLuint hash; /* swizzle value this matches */
- GLuint base; /* base value for hw swizzle */
- GLuint stride; /* difference in base between arg0/1/2 */
- GLuint flags;
-} v_swiz[] = {
- /* *INDENT-OFF* */
- {MAKE_SWZ3(X, Y, Z), R300_ALU_ARGC_SRC0C_XYZ, 4, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(X, X, X), R300_ALU_ARGC_SRC0C_XXX, 4, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(Y, Y, Y), R300_ALU_ARGC_SRC0C_YYY, 4, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(Z, Z, Z), R300_ALU_ARGC_SRC0C_ZZZ, 4, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(W, W, W), R300_ALU_ARGC_SRC0A, 1, SLOT_SRC_SCALAR},
- {MAKE_SWZ3(Y, Z, X), R300_ALU_ARGC_SRC0C_YZX, 1, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(Z, X, Y), R300_ALU_ARGC_SRC0C_ZXY, 1, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(W, Z, Y), R300_ALU_ARGC_SRC0CA_WZY, 1, SLOT_SRC_BOTH},
- {MAKE_SWZ3(ONE, ONE, ONE), R300_ALU_ARGC_ONE, 0, 0},
- {MAKE_SWZ3(ZERO, ZERO, ZERO), R300_ALU_ARGC_ZERO, 0, 0},
- {MAKE_SWZ3(HALF, HALF, HALF), R300_ALU_ARGC_HALF, 0, 0},
- {PFS_INVAL, 0, 0, 0},
- /* *INDENT-ON* */
-};
-
-/* used during matching of non-native swizzles */
-#define SWZ_X_MASK (7 << 0)
-#define SWZ_Y_MASK (7 << 3)
-#define SWZ_Z_MASK (7 << 6)
-#define SWZ_W_MASK (7 << 9)
-static const struct {
- GLuint hash; /* used to mask matching swizzle components */
- int mask; /* actual outmask */
- int count; /* count of components matched */
-} s_mask[] = {
- /* *INDENT-OFF* */
- {SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK, 1 | 2 | 4, 3},
- {SWZ_X_MASK | SWZ_Y_MASK, 1 | 2, 2},
- {SWZ_X_MASK | SWZ_Z_MASK, 1 | 4, 2},
- {SWZ_Y_MASK | SWZ_Z_MASK, 2 | 4, 2},
- {SWZ_X_MASK, 1, 1},
- {SWZ_Y_MASK, 2, 1},
- {SWZ_Z_MASK, 4, 1},
- {PFS_INVAL, PFS_INVAL, PFS_INVAL}
- /* *INDENT-ON* */
-};
-
-static const struct {
- int base; /* hw value of swizzle */
- int stride; /* difference between SRC0/1/2 */
- GLuint flags;
-} s_swiz[] = {
- /* *INDENT-OFF* */
- {R300_ALU_ARGA_SRC0C_X, 3, SLOT_SRC_VECTOR},
- {R300_ALU_ARGA_SRC0C_Y, 3, SLOT_SRC_VECTOR},
- {R300_ALU_ARGA_SRC0C_Z, 3, SLOT_SRC_VECTOR},
- {R300_ALU_ARGA_SRC0A, 1, SLOT_SRC_SCALAR},
- {R300_ALU_ARGA_ZERO, 0, 0},
- {R300_ALU_ARGA_ONE, 0, 0},
- {R300_ALU_ARGA_HALF, 0, 0}
- /* *INDENT-ON* */
-};
-
-/* boiler-plate reg, for convenience */
-static const GLuint undef = REG(REG_TYPE_TEMP,
- 0,
- SWIZZLE_XYZ,
- SWIZZLE_W,
- GL_FALSE,
- GL_FALSE,
- GL_FALSE);
-
-/* constant one source */
-static const GLuint pfs_one = REG(REG_TYPE_CONST,
- 0,
- SWIZZLE_111,
- SWIZZLE_ONE,
- GL_FALSE,
- GL_TRUE,
- GL_TRUE);
-
-/* constant half source */
-static const GLuint pfs_half = REG(REG_TYPE_CONST,
- 0,
- SWIZZLE_HHH,
- SWIZZLE_HALF,
- GL_FALSE,
- GL_TRUE,
- GL_TRUE);
-
-/* constant zero source */
-static const GLuint pfs_zero = REG(REG_TYPE_CONST,
- 0,
- SWIZZLE_000,
- SWIZZLE_ZERO,
- GL_FALSE,
- GL_TRUE,
- GL_TRUE);
-
-/*
- * Common functions prototypes
- */
-static void dump_program(struct r300_fragment_program *fp,
- struct r300_fragment_program_code *code);
-static void emit_arith(struct r300_pfs_compile_state *cs, int op,
- GLuint dest, int mask,
- GLuint src0, GLuint src1, GLuint src2, int flags);
-
-/**
- * Get an R300 temporary that can be written to in the given slot.
- */
-static int get_hw_temp(struct r300_pfs_compile_state *cs, int slot)
-{
- COMPILE_STATE;
- int r;
-
- for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
- if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= slot)
- break;
- }
-
- if (r >= PFS_NUM_TEMP_REGS) {
- ERROR("Out of hardware temps\n");
- return 0;
- }
- // Reserved is used to avoid the following scenario:
- // R300 temporary X is first assigned to Mesa temporary Y during vector ops
- // R300 temporary X is then assigned to Mesa temporary Z for further vector ops
- // Then scalar ops on Mesa temporary Z are emitted and move back in time
- // to overwrite the value of temporary Y.
- // End scenario.
- cs->hwtemps[r].reserved = cs->hwtemps[r].free;
- cs->hwtemps[r].free = -1;
-
- // Reset to some value that won't mess things up when the user
- // tries to read from a temporary that hasn't been assigned a value yet.
- // In the normal case, vector_valid and scalar_valid should be set to
- // a sane value by the first emit that writes to this temporary.
- cs->hwtemps[r].vector_valid = 0;
- cs->hwtemps[r].scalar_valid = 0;
-
- if (r > code->max_temp_idx)
- code->max_temp_idx = r;
-
- return r;
-}
-
-/**
- * Get an R300 temporary that will act as a TEX destination register.
- */
-static int get_hw_temp_tex(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- int r;
-
- for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
- if (cs->used_in_node & (1 << r))
- continue;
-
- // Note: Be very careful here
- if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= 0)
- break;
- }
-
- if (r >= PFS_NUM_TEMP_REGS)
- return get_hw_temp(cs, 0); /* Will cause an indirection */
-
- cs->hwtemps[r].reserved = cs->hwtemps[r].free;
- cs->hwtemps[r].free = -1;
-
- // Reset to some value that won't mess things up when the user
- // tries to read from a temporary that hasn't been assigned a value yet.
- // In the normal case, vector_valid and scalar_valid should be set to
- // a sane value by the first emit that writes to this temporary.
- cs->hwtemps[r].vector_valid = cs->nrslots;
- cs->hwtemps[r].scalar_valid = cs->nrslots;
-
- if (r > code->max_temp_idx)
- code->max_temp_idx = r;
-
- return r;
-}
-
-/**
- * Mark the given hardware register as free.
- */
-static void free_hw_temp(struct r300_pfs_compile_state *cs, int idx)
-{
- // Be very careful here. Consider sequences like
- // MAD r0, r1,r2,r3
- // TEX r4, ...
- // The TEX instruction may be moved in front of the MAD instruction
- // due to the way nodes work. We don't want to alias r1 and r4 in
- // this case.
- // I'm certain the register allocation could be further sanitized,
- // but it's tricky because of stuff that can happen inside emit_tex
- // and emit_arith.
- cs->hwtemps[idx].free = cs->nrslots + 1;
-}
-
-/**
- * Create a new Mesa temporary register.
- */
-static GLuint get_temp_reg(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- GLuint r = undef;
- GLuint index;
-
- index = ffs(~cs->temp_in_use);
- if (!index) {
- ERROR("Out of program temps\n");
- return r;
- }
-
- cs->temp_in_use |= (1 << --index);
- cs->temps[index].refcount = 0xFFFFFFFF;
- cs->temps[index].reg = -1;
-
- REG_SET_TYPE(r, REG_TYPE_TEMP);
- REG_SET_INDEX(r, index);
- REG_SET_VALID(r, GL_TRUE);
- return r;
-}
-
-/**
- * Create a new Mesa temporary register that will act as the destination
- * register for a texture read.
- */
-static GLuint get_temp_reg_tex(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- GLuint r = undef;
- GLuint index;
-
- index = ffs(~cs->temp_in_use);
- if (!index) {
- ERROR("Out of program temps\n");
- return r;
- }
-
- cs->temp_in_use |= (1 << --index);
- cs->temps[index].refcount = 0xFFFFFFFF;
- cs->temps[index].reg = get_hw_temp_tex(cs);
-
- REG_SET_TYPE(r, REG_TYPE_TEMP);
- REG_SET_INDEX(r, index);
- REG_SET_VALID(r, GL_TRUE);
- return r;
-}
-
-/**
- * Free a Mesa temporary and the associated R300 temporary.
- */
-static void free_temp(struct r300_pfs_compile_state *cs, GLuint r)
-{
- GLuint index = REG_GET_INDEX(r);
-
- if (!(cs->temp_in_use & (1 << index)))
- return;
-
- if (REG_GET_TYPE(r) == REG_TYPE_TEMP) {
- free_hw_temp(cs, cs->temps[index].reg);
- cs->temps[index].reg = -1;
- cs->temp_in_use &= ~(1 << index);
- } else if (REG_GET_TYPE(r) == REG_TYPE_INPUT) {
- free_hw_temp(cs, cs->inputs[index].reg);
- cs->inputs[index].reg = -1;
- }
-}
-
-/**
- * Emit a hardware constant/parameter.
- *
- * \p cp Stable pointer to an array of 4 floats.
- * The pointer must be stable in the sense that it remains to be valid
- * and hold the contents of the constant/parameter throughout the lifetime
- * of the fragment program (actually, up until the next time the fragment
- * program is translated).
- */
-static GLuint emit_const4fv(struct r300_pfs_compile_state *cs,
- const GLfloat * cp)
-{
- COMPILE_STATE;
- GLuint reg = undef;
- int index;
- for (index = 0; index < code->const_nr; ++index) {
- if (code->constant[index] == cp)
- break;
- }
-
- if (index >= code->const_nr) {
- if (index >= PFS_NUM_CONST_REGS) {
- ERROR("Out of hw constants!\n");
- return reg;
- }
-
- code->const_nr++;
- code->constant[index] = cp;
- }
-
- REG_SET_TYPE(reg, REG_TYPE_CONST);
- REG_SET_INDEX(reg, index);
- REG_SET_VALID(reg, GL_TRUE);
- return reg;
-}
-
-static inline GLuint negate(GLuint r)
-{
- REG_NEGS(r);
- REG_NEGV(r);
- return r;
-}
-
-/* Hack, to prevent clobbering sources used multiple times when
- * emulating non-native instructions
- */
-static inline GLuint keep(GLuint r)
-{
- REG_SET_NO_USE(r, GL_TRUE);
- return r;
-}
-
-static inline GLuint absolute(GLuint r)
-{
- REG_ABS(r);
- return r;
-}
-
-static int swz_native(struct r300_pfs_compile_state *cs,
- GLuint src, GLuint * r, GLuint arbneg)
-{
- COMPILE_STATE;
-
- /* Native swizzle, handle negation */
- src = (src & ~REG_NEGS_MASK) | (((arbneg >> 3) & 1) << REG_NEGS_SHIFT);
-
- if ((arbneg & 0x7) == 0x0) {
- src = src & ~REG_NEGV_MASK;
- *r = src;
- } else if ((arbneg & 0x7) == 0x7) {
- src |= REG_NEGV_MASK;
- *r = src;
- } else {
- if (!REG_GET_VALID(*r))
- *r = get_temp_reg(cs);
- src |= REG_NEGV_MASK;
- emit_arith(cs,
- PFS_OP_MAD,
- *r, arbneg & 0x7, keep(src), pfs_one, pfs_zero, 0);
- src = src & ~REG_NEGV_MASK;
- emit_arith(cs,
- PFS_OP_MAD,
- *r,
- (arbneg ^ 0x7) | WRITEMASK_W,
- src, pfs_one, pfs_zero, 0);
- }
-
- return 3;
-}
-
-static int swz_emit_partial(struct r300_pfs_compile_state *cs,
- GLuint src,
- GLuint * r, int mask, int mc, GLuint arbneg)
-{
- COMPILE_STATE;
- GLuint tmp;
- GLuint wmask = 0;
-
- if (!REG_GET_VALID(*r))
- *r = get_temp_reg(cs);
-
- /* A partial match, VSWZ/mask define what parts of the
- * desired swizzle we match
- */
- if (mc + s_mask[mask].count == 3) {
- wmask = WRITEMASK_W;
- src |= ((arbneg >> 3) & 1) << REG_NEGS_SHIFT;
- }
-
- tmp = arbneg & s_mask[mask].mask;
- if (tmp) {
- tmp = tmp ^ s_mask[mask].mask;
- if (tmp) {
- emit_arith(cs,
- PFS_OP_MAD,
- *r,
- arbneg & s_mask[mask].mask,
- keep(src) | REG_NEGV_MASK,
- pfs_one, pfs_zero, 0);
- if (!wmask) {
- REG_SET_NO_USE(src, GL_TRUE);
- } else {
- REG_SET_NO_USE(src, GL_FALSE);
- }
- emit_arith(cs,
- PFS_OP_MAD,
- *r, tmp | wmask, src, pfs_one, pfs_zero, 0);
- } else {
- if (!wmask) {
- REG_SET_NO_USE(src, GL_TRUE);
- } else {
- REG_SET_NO_USE(src, GL_FALSE);
- }
- emit_arith(cs,
- PFS_OP_MAD,
- *r,
- (arbneg & s_mask[mask].mask) | wmask,
- src | REG_NEGV_MASK, pfs_one, pfs_zero, 0);
- }
- } else {
- if (!wmask) {
- REG_SET_NO_USE(src, GL_TRUE);
- } else {
- REG_SET_NO_USE(src, GL_FALSE);
- }
- emit_arith(cs, PFS_OP_MAD,
- *r,
- s_mask[mask].mask | wmask,
- src, pfs_one, pfs_zero, 0);
- }
-
- return s_mask[mask].count;
-}
-
-static GLuint do_swizzle(struct r300_pfs_compile_state *cs,
- GLuint src, GLuint arbswz, GLuint arbneg)
-{
- COMPILE_STATE;
- GLuint r = undef;
- GLuint vswz;
- int c_mask = 0;
- int v_match = 0;
-
- /* If swizzling from something without an XYZW native swizzle,
- * emit result to a temp, and do new swizzle from the temp.
- */
-#if 0
- if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
- GLuint temp = get_temp_reg(fp);
- emit_arith(fp,
- PFS_OP_MAD,
- temp, WRITEMASK_XYZW, src, pfs_one, pfs_zero, 0);
- src = temp;
- }
-#endif
-
- if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
- GLuint vsrcswz =
- (v_swiz[REG_GET_VSWZ(src)].
- hash & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK)) |
- REG_GET_SSWZ(src) << 9;
- GLint i;
-
- GLuint newswz = 0;
- GLuint offset;
- for (i = 0; i < 4; ++i) {
- offset = GET_SWZ(arbswz, i);
-
- newswz |=
- (offset <= 3) ? GET_SWZ(vsrcswz,
- offset) << i *
- 3 : offset << i * 3;
- }
-
- arbswz = newswz & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK);
- REG_SET_SSWZ(src, GET_SWZ(newswz, 3));
- } else {
- /* set scalar swizzling */
- REG_SET_SSWZ(src, GET_SWZ(arbswz, 3));
-
- }
- do {
- vswz = REG_GET_VSWZ(src);
- do {
- int chash;
-
- REG_SET_VSWZ(src, vswz);
- chash = v_swiz[REG_GET_VSWZ(src)].hash &
- s_mask[c_mask].hash;
-
- if (chash == (arbswz & s_mask[c_mask].hash)) {
- if (s_mask[c_mask].count == 3) {
- v_match += swz_native(cs,
- src, &r, arbneg);
- } else {
- v_match += swz_emit_partial(cs,
- src,
- &r,
- c_mask,
- v_match,
- arbneg);
- }
-
- if (v_match == 3)
- return r;
-
- /* Fill with something invalid.. all 0's was
- * wrong before, matched SWIZZLE_X. So all
- * 1's will be okay for now
- */
- arbswz |= (PFS_INVAL & s_mask[c_mask].hash);
- }
- } while (v_swiz[++vswz].hash != PFS_INVAL);
- REG_SET_VSWZ(src, SWIZZLE_XYZ);
- } while (s_mask[++c_mask].hash != PFS_INVAL);
-
- ERROR("should NEVER get here\n");
- return r;
-}
-
-static GLuint t_src(struct r300_pfs_compile_state *cs,
- struct prog_src_register fpsrc)
-{
- COMPILE_STATE;
- GLuint r = undef;
-
- switch (fpsrc.File) {
- case PROGRAM_TEMPORARY:
- REG_SET_INDEX(r, fpsrc.Index);
- REG_SET_VALID(r, GL_TRUE);
- REG_SET_TYPE(r, REG_TYPE_TEMP);
- break;
- case PROGRAM_INPUT:
- REG_SET_INDEX(r, fpsrc.Index);
- REG_SET_VALID(r, GL_TRUE);
- REG_SET_TYPE(r, REG_TYPE_INPUT);
- break;
- case PROGRAM_LOCAL_PARAM:
- r = emit_const4fv(cs,
- fp->mesa_program.Base.LocalParams[fpsrc.
- Index]);
- break;
- case PROGRAM_ENV_PARAM:
- r = emit_const4fv(cs,
- cs->r300->radeon.glCtx->FragmentProgram.Parameters[fpsrc.Index]);
- break;
- case PROGRAM_STATE_VAR:
- case PROGRAM_NAMED_PARAM:
- case PROGRAM_CONSTANT:
- r = emit_const4fv(cs,
- fp->mesa_program.Base.Parameters->
- ParameterValues[fpsrc.Index]);
- break;
- default:
- ERROR("unknown SrcReg->File %x\n", fpsrc.File);
- return r;
- }
-
- /* no point swizzling ONE/ZERO/HALF constants... */
- if (REG_GET_VSWZ(r) < SWIZZLE_111 || REG_GET_SSWZ(r) < SWIZZLE_ZERO)
- r = do_swizzle(cs, r, fpsrc.Swizzle, fpsrc.NegateBase);
- return r;
-}
-
-static GLuint t_scalar_src(struct r300_pfs_compile_state *cs,
- struct prog_src_register fpsrc)
-{
- struct prog_src_register src = fpsrc;
- int sc = GET_SWZ(fpsrc.Swizzle, 0); /* X */
-
- src.Swizzle = ((sc << 0) | (sc << 3) | (sc << 6) | (sc << 9));
-
- return t_src(cs, src);
-}
-
-static GLuint t_dst(struct r300_pfs_compile_state *cs,
- struct prog_dst_register dest)
-{
- COMPILE_STATE;
- GLuint r = undef;
-
- switch (dest.File) {
- case PROGRAM_TEMPORARY:
- REG_SET_INDEX(r, dest.Index);
- REG_SET_VALID(r, GL_TRUE);
- REG_SET_TYPE(r, REG_TYPE_TEMP);
- return r;
- case PROGRAM_OUTPUT:
- REG_SET_TYPE(r, REG_TYPE_OUTPUT);
- switch (dest.Index) {
- case FRAG_RESULT_COLR:
- case FRAG_RESULT_DEPR:
- REG_SET_INDEX(r, dest.Index);
- REG_SET_VALID(r, GL_TRUE);
- return r;
- default:
- ERROR("Bad DstReg->Index 0x%x\n", dest.Index);
- return r;
- }
- default:
- ERROR("Bad DstReg->File 0x%x\n", dest.File);
- return r;
- }
-}
-
-static int t_hw_src(struct r300_pfs_compile_state *cs, GLuint src, GLboolean tex)
-{
- COMPILE_STATE;
- int idx;
- int index = REG_GET_INDEX(src);
-
- switch (REG_GET_TYPE(src)) {
- case REG_TYPE_TEMP:
- /* NOTE: if reg==-1 here, a source is being read that
- * hasn't been written to. Undefined results.
- */
- if (cs->temps[index].reg == -1)
- cs->temps[index].reg = get_hw_temp(cs, cs->nrslots);
-
- idx = cs->temps[index].reg;
-
- if (!REG_GET_NO_USE(src) && (--cs->temps[index].refcount == 0))
- free_temp(cs, src);
- break;
- case REG_TYPE_INPUT:
- idx = cs->inputs[index].reg;
-
- if (!REG_GET_NO_USE(src) && (--cs->inputs[index].refcount == 0))
- free_hw_temp(cs, cs->inputs[index].reg);
- break;
- case REG_TYPE_CONST:
- return (index | SRC_CONST);
- default:
- ERROR("Invalid type for source reg\n");
- return (0 | SRC_CONST);
- }
-
- if (!tex)
- cs->used_in_node |= (1 << idx);
-
- return idx;
-}
-
-static int t_hw_dst(struct r300_pfs_compile_state *cs,
- GLuint dest, GLboolean tex, int slot)
-{
- COMPILE_STATE;
- int idx;
- GLuint index = REG_GET_INDEX(dest);
- assert(REG_GET_VALID(dest));
-
- switch (REG_GET_TYPE(dest)) {
- case REG_TYPE_TEMP:
- if (cs->temps[REG_GET_INDEX(dest)].reg == -1) {
- if (!tex) {
- cs->temps[index].reg = get_hw_temp(cs, slot);
- } else {
- cs->temps[index].reg = get_hw_temp_tex(cs);
- }
- }
- idx = cs->temps[index].reg;
-
- if (!REG_GET_NO_USE(dest) && (--cs->temps[index].refcount == 0))
- free_temp(cs, dest);
-
- cs->dest_in_node |= (1 << idx);
- cs->used_in_node |= (1 << idx);
- break;
- case REG_TYPE_OUTPUT:
- switch (index) {
- case FRAG_RESULT_COLR:
- code->node[code->cur_node].flags |= R300_RGBA_OUT;
- break;
- case FRAG_RESULT_DEPR:
- fp->WritesDepth = GL_TRUE;
- code->node[code->cur_node].flags |= R300_W_OUT;
- break;
- }
- return index;
- break;
- default:
- ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
- return 0;
- }
-
- return idx;
-}
-
-static void emit_nop(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
-
- if (cs->nrslots >= PFS_MAX_ALU_INST) {
- ERROR("Out of ALU instruction slots\n");
- return;
- }
-
- code->alu.inst[cs->nrslots].inst0 = NOP_INST0;
- code->alu.inst[cs->nrslots].inst1 = NOP_INST1;
- code->alu.inst[cs->nrslots].inst2 = NOP_INST2;
- code->alu.inst[cs->nrslots].inst3 = NOP_INST3;
- cs->nrslots++;
-}
-
-static void emit_tex(struct r300_pfs_compile_state *cs,
- struct prog_instruction *fpi, int opcode)
+static void update_params(r300ContextPtr r300, struct r300_fragment_program *fp)
{
- COMPILE_STATE;
- GLuint coord = t_src(cs, fpi->SrcReg[0]);
- GLuint dest = undef, rdest = undef;
- GLuint din, uin;
- int unit = fpi->TexSrcUnit;
- int hwsrc, hwdest;
- GLuint tempreg = 0;
-
- /**
- * Hardware uses [0..1]x[0..1] range for rectangle textures
- * instead of [0..Width]x[0..Height].
- * Add a scaling instruction.
- *
- * \todo Refactor this once we have proper rewriting/optimization
- * support for programs.
- */
- if (opcode != R300_TEX_OP_KIL && fpi->TexSrcTarget == TEXTURE_RECT_INDEX) {
- gl_state_index tokens[STATE_LENGTH] = {
- STATE_INTERNAL, STATE_R300_TEXRECT_FACTOR, 0, 0,
- 0
- };
- int factor_index;
- GLuint factorreg;
-
- tokens[2] = unit;
- factor_index =
- _mesa_add_state_reference(fp->mesa_program.Base.
- Parameters, tokens);
- factorreg =
- emit_const4fv(cs,
- fp->mesa_program.Base.Parameters->
- ParameterValues[factor_index]);
- tempreg = keep(get_temp_reg(cs));
-
- emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
- coord, factorreg, pfs_zero, 0);
-
- coord = tempreg;
- }
-
- /* Texture operations do not support swizzles etc. in hardware,
- * so emit an additional arithmetic operation if necessary.
- */
- if (REG_GET_VSWZ(coord) != SWIZZLE_XYZ ||
- REG_GET_SSWZ(coord) != SWIZZLE_W ||
- coord & (REG_NEGV_MASK | REG_NEGS_MASK | REG_ABS_MASK)) {
- assert(tempreg == 0);
- tempreg = keep(get_temp_reg(cs));
- emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
- coord, pfs_one, pfs_zero, 0);
- coord = tempreg;
- }
-
- /* Ensure correct node indirection */
- uin = cs->used_in_node;
- din = cs->dest_in_node;
-
- /* Resolve source/dest to hardware registers */
- hwsrc = t_hw_src(cs, coord, GL_TRUE);
-
- if (opcode != R300_TEX_OP_KIL) {
- dest = t_dst(cs, fpi->DstReg);
-
- /* r300 doesn't seem to be able to do TEX->output reg */
- if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
- rdest = dest;
- dest = get_temp_reg_tex(cs);
- } else if (fpi->DstReg.WriteMask != WRITEMASK_XYZW) {
- /* in case write mask isn't XYZW */
- rdest = dest;
- dest = get_temp_reg_tex(cs);
- }
- hwdest =
- t_hw_dst(cs, dest, GL_TRUE,
- code->node[code->cur_node].alu_offset);
-
- /* Use a temp that hasn't been used in this node, rather
- * than causing an indirection
- */
- if (uin & (1 << hwdest)) {
- free_hw_temp(cs, hwdest);
- hwdest = get_hw_temp_tex(cs);
- cs->temps[REG_GET_INDEX(dest)].reg = hwdest;
- }
- } else {
- hwdest = 0;
- unit = 0;
- }
-
- /* Indirection if source has been written in this node, or if the
- * dest has been read/written in this node
- */
- if ((REG_GET_TYPE(coord) != REG_TYPE_CONST &&
- (din & (1 << hwsrc))) || (uin & (1 << hwdest))) {
-
- /* Finish off current node */
- if (code->node[code->cur_node].alu_offset == cs->nrslots)
- emit_nop(cs);
-
- code->node[code->cur_node].alu_end =
- cs->nrslots - code->node[code->cur_node].alu_offset - 1;
- assert(code->node[code->cur_node].alu_end >= 0);
-
- if (++code->cur_node >= PFS_MAX_TEX_INDIRECT) {
- ERROR("too many levels of texture indirection\n");
- return;
- }
-
- /* Start new node */
- code->node[code->cur_node].tex_offset = code->tex.length;
- code->node[code->cur_node].alu_offset = cs->nrslots;
- code->node[code->cur_node].tex_end = -1;
- code->node[code->cur_node].alu_end = -1;
- code->node[code->cur_node].flags = 0;
- cs->used_in_node = 0;
- cs->dest_in_node = 0;
- }
-
- if (code->cur_node == 0)
- code->first_node_has_tex = 1;
-
- code->tex.inst[code->tex.length++] = 0 | (hwsrc << R300_SRC_ADDR_SHIFT)
- | (hwdest << R300_DST_ADDR_SHIFT)
- | (unit << R300_TEX_ID_SHIFT)
- | (opcode << R300_TEX_INST_SHIFT);
-
- cs->dest_in_node |= (1 << hwdest);
- if (REG_GET_TYPE(coord) != REG_TYPE_CONST)
- cs->used_in_node |= (1 << hwsrc);
-
- code->node[code->cur_node].tex_end++;
-
- /* Copy from temp to output if needed */
- if (REG_GET_VALID(rdest)) {
- emit_arith(cs, PFS_OP_MAD, rdest, fpi->DstReg.WriteMask, dest,
- pfs_one, pfs_zero, 0);
- free_temp(cs, dest);
- }
+ struct gl_fragment_program *mp = &fp->mesa_program;
- /* Free temp register */
- if (tempreg != 0)
- free_temp(cs, tempreg);
+ /* Ask Mesa nicely to fill in ParameterValues for us */
+ if (mp->Base.Parameters)
+ _mesa_load_state_parameters(r300->radeon.glCtx, mp->Base.Parameters);
}
-/**
- * Returns the first slot where we could possibly allow writing to dest,
- * according to register allocation.
- */
-static int get_earliest_allowed_write(struct r300_pfs_compile_state *cs,
- GLuint dest, int mask)
-{
- COMPILE_STATE;
- int idx;
- int pos;
- GLuint index = REG_GET_INDEX(dest);
- assert(REG_GET_VALID(dest));
-
- switch (REG_GET_TYPE(dest)) {
- case REG_TYPE_TEMP:
- if (cs->temps[index].reg == -1)
- return 0;
-
- idx = cs->temps[index].reg;
- break;
- case REG_TYPE_OUTPUT:
- return 0;
- default:
- ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
- return 0;
- }
-
- pos = cs->hwtemps[idx].reserved;
- if (mask & WRITEMASK_XYZ) {
- if (pos < cs->hwtemps[idx].vector_lastread)
- pos = cs->hwtemps[idx].vector_lastread;
- }
- if (mask & WRITEMASK_W) {
- if (pos < cs->hwtemps[idx].scalar_lastread)
- pos = cs->hwtemps[idx].scalar_lastread;
- }
-
- return pos;
-}
/**
- * Allocates a slot for an ALU instruction that can consist of
- * a vertex part or a scalar part or both.
+ * Transform the program to support fragment.position.
*
- * Sources from src (src[0] to src[argc-1]) are added to the slot in the
- * appropriate position (vector and/or scalar), and their positions are
- * recorded in the srcpos array.
+ * Introduce a small fragment at the start of the program that will be
+ * the only code that directly reads the FRAG_ATTRIB_WPOS input.
+ * All other code pieces that reference that input will be rewritten
+ * to read from a newly allocated temporary.
*
- * This function emits instruction code for the source fetch and the
- * argument selection. It does not emit instruction code for the
- * opcode or the destination selection.
- *
- * @return the index of the slot
- */
-static int find_and_prepare_slot(struct r300_pfs_compile_state *cs,
- GLboolean emit_vop,
- GLboolean emit_sop,
- int argc, GLuint * src, GLuint dest, int mask)
-{
- COMPILE_STATE;
- int hwsrc[3];
- int srcpos[3];
- unsigned int used;
- int tempused;
- int tempvsrc[3];
- int tempssrc[3];
- int pos;
- int regnr;
- int i, j;
-
- // Determine instruction slots, whether sources are required on
- // vector or scalar side, and the smallest slot number where
- // all source registers are available
- used = 0;
- if (emit_vop)
- used |= SLOT_OP_VECTOR;
- if (emit_sop)
- used |= SLOT_OP_SCALAR;
-
- pos = get_earliest_allowed_write(cs, dest, mask);
-
- if (code->node[code->cur_node].alu_offset > pos)
- pos = code->node[code->cur_node].alu_offset;
- for (i = 0; i < argc; ++i) {
- if (!REG_GET_BUILTIN(src[i])) {
- if (emit_vop)
- used |= v_swiz[REG_GET_VSWZ(src[i])].flags << i;
- if (emit_sop)
- used |= s_swiz[REG_GET_SSWZ(src[i])].flags << i;
- }
-
- hwsrc[i] = t_hw_src(cs, src[i], GL_FALSE); /* Note: sideeffects wrt refcounting! */
- regnr = hwsrc[i] & 31;
-
- if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
- if (used & (SLOT_SRC_VECTOR << i)) {
- if (cs->hwtemps[regnr].vector_valid > pos)
- pos = cs->hwtemps[regnr].vector_valid;
- }
- if (used & (SLOT_SRC_SCALAR << i)) {
- if (cs->hwtemps[regnr].scalar_valid > pos)
- pos = cs->hwtemps[regnr].scalar_valid;
- }
- }
- }
-
- // Find a slot that fits
- for (;; ++pos) {
- if (cs->slot[pos].used & used & SLOT_OP_BOTH)
- continue;
-
- if (pos >= cs->nrslots) {
- if (cs->nrslots >= PFS_MAX_ALU_INST) {
- ERROR("Out of ALU instruction slots\n");
- return -1;
- }
-
- code->alu.inst[pos].inst0 = NOP_INST0;
- code->alu.inst[pos].inst1 = NOP_INST1;
- code->alu.inst[pos].inst2 = NOP_INST2;
- code->alu.inst[pos].inst3 = NOP_INST3;
-
- cs->nrslots++;
- }
- // Note: When we need both parts (vector and scalar) of a source,
- // we always try to put them into the same position. This makes the
- // code easier to read, and it is optimal (i.e. one doesn't gain
- // anything by splitting the parts).
- // It also avoids headaches with swizzles that access both parts (i.e WXY)
- tempused = cs->slot[pos].used;
- for (i = 0; i < 3; ++i) {
- tempvsrc[i] = cs->slot[pos].vsrc[i];
- tempssrc[i] = cs->slot[pos].ssrc[i];
- }
-
- for (i = 0; i < argc; ++i) {
- int flags = (used >> i) & SLOT_SRC_BOTH;
-
- if (!flags) {
- srcpos[i] = 0;
- continue;
- }
-
- for (j = 0; j < 3; ++j) {
- if ((tempused >> j) & flags & SLOT_SRC_VECTOR) {
- if (tempvsrc[j] != hwsrc[i])
- continue;
- }
-
- if ((tempused >> j) & flags & SLOT_SRC_SCALAR) {
- if (tempssrc[j] != hwsrc[i])
- continue;
- }
-
- break;
- }
-
- if (j == 3)
- break;
-
- srcpos[i] = j;
- tempused |= flags << j;
- if (flags & SLOT_SRC_VECTOR)
- tempvsrc[j] = hwsrc[i];
- if (flags & SLOT_SRC_SCALAR)
- tempssrc[j] = hwsrc[i];
- }
-
- if (i == argc)
- break;
- }
-
- // Found a slot, reserve it
- cs->slot[pos].used = tempused | (used & SLOT_OP_BOTH);
- for (i = 0; i < 3; ++i) {
- cs->slot[pos].vsrc[i] = tempvsrc[i];
- cs->slot[pos].ssrc[i] = tempssrc[i];
- }
-
- for (i = 0; i < argc; ++i) {
- if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
- int regnr = hwsrc[i] & 31;
-
- if (used & (SLOT_SRC_VECTOR << i)) {
- if (cs->hwtemps[regnr].vector_lastread < pos)
- cs->hwtemps[regnr].vector_lastread =
- pos;
- }
- if (used & (SLOT_SRC_SCALAR << i)) {
- if (cs->hwtemps[regnr].scalar_lastread < pos)
- cs->hwtemps[regnr].scalar_lastread =
- pos;
- }
- }
- }
-
- // Emit the source fetch code
- code->alu.inst[pos].inst1 &= ~R300_ALU_SRC_MASK;
- code->alu.inst[pos].inst1 |=
- ((cs->slot[pos].vsrc[0] << R300_ALU_SRC0C_SHIFT) |
- (cs->slot[pos].vsrc[1] << R300_ALU_SRC1C_SHIFT) |
- (cs->slot[pos].vsrc[2] << R300_ALU_SRC2C_SHIFT));
-
- code->alu.inst[pos].inst3 &= ~R300_ALU_SRC_MASK;
- code->alu.inst[pos].inst3 |=
- ((cs->slot[pos].ssrc[0] << R300_ALU_SRC0A_SHIFT) |
- (cs->slot[pos].ssrc[1] << R300_ALU_SRC1A_SHIFT) |
- (cs->slot[pos].ssrc[2] << R300_ALU_SRC2A_SHIFT));
-
- // Emit the argument selection code
- if (emit_vop) {
- int swz[3];
-
- for (i = 0; i < 3; ++i) {
- if (i < argc) {
- swz[i] = (v_swiz[REG_GET_VSWZ(src[i])].base +
- (srcpos[i] *
- v_swiz[REG_GET_VSWZ(src[i])].
- stride)) | ((src[i] & REG_NEGV_MASK)
- ? ARG_NEG : 0) | ((src[i]
- &
- REG_ABS_MASK)
- ?
- ARG_ABS
- : 0);
- } else {
- swz[i] = R300_ALU_ARGC_ZERO;
- }
- }
-
- code->alu.inst[pos].inst0 &=
- ~(R300_ALU_ARG0C_MASK | R300_ALU_ARG1C_MASK |
- R300_ALU_ARG2C_MASK);
- code->alu.inst[pos].inst0 |=
- (swz[0] << R300_ALU_ARG0C_SHIFT) | (swz[1] <<
- R300_ALU_ARG1C_SHIFT)
- | (swz[2] << R300_ALU_ARG2C_SHIFT);
- }
-
- if (emit_sop) {
- int swz[3];
-
- for (i = 0; i < 3; ++i) {
- if (i < argc) {
- swz[i] = (s_swiz[REG_GET_SSWZ(src[i])].base +
- (srcpos[i] *
- s_swiz[REG_GET_SSWZ(src[i])].
- stride)) | ((src[i] & REG_NEGV_MASK)
- ? ARG_NEG : 0) | ((src[i]
- &
- REG_ABS_MASK)
- ?
- ARG_ABS
- : 0);
- } else {
- swz[i] = R300_ALU_ARGA_ZERO;
- }
- }
-
- code->alu.inst[pos].inst2 &=
- ~(R300_ALU_ARG0A_MASK | R300_ALU_ARG1A_MASK |
- R300_ALU_ARG2A_MASK);
- code->alu.inst[pos].inst2 |=
- (swz[0] << R300_ALU_ARG0A_SHIFT) | (swz[1] <<
- R300_ALU_ARG1A_SHIFT)
- | (swz[2] << R300_ALU_ARG2A_SHIFT);
- }
-
- return pos;
-}
-
-/**
- * Append an ALU instruction to the instruction list.
+ * \todo if/when r5xx supports the radeon_program architecture, this is a
+ * likely candidate for code sharing.
*/
-static void emit_arith(struct r300_pfs_compile_state *cs,
- int op,
- GLuint dest,
- int mask,
- GLuint src0, GLuint src1, GLuint src2, int flags)
+static void insert_WPOS_trailer(struct r300_fragment_program_compiler *compiler)
{
- COMPILE_STATE;
- GLuint src[3] = { src0, src1, src2 };
- int hwdest;
- GLboolean emit_vop, emit_sop;
- int vop, sop, argc;
- int pos;
-
- vop = r300_fpop[op].v_op;
- sop = r300_fpop[op].s_op;
- argc = r300_fpop[op].argc;
+ GLuint InputsRead = compiler->fp->mesa_program.Base.InputsRead;
- if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT &&
- REG_GET_INDEX(dest) == FRAG_RESULT_DEPR) {
- if (mask & WRITEMASK_Z) {
- mask = WRITEMASK_W;
- } else {
- return;
- }
- }
-
- emit_vop = GL_FALSE;
- emit_sop = GL_FALSE;
- if ((mask & WRITEMASK_XYZ) || vop == R300_ALU_OUTC_DP3)
- emit_vop = GL_TRUE;
- if ((mask & WRITEMASK_W) || vop == R300_ALU_OUTC_REPL_ALPHA)
- emit_sop = GL_TRUE;
-
- pos =
- find_and_prepare_slot(cs, emit_vop, emit_sop, argc, src, dest,
- mask);
- if (pos < 0)
+ if (!(InputsRead & FRAG_BIT_WPOS))
return;
- hwdest = t_hw_dst(cs, dest, GL_FALSE, pos); /* Note: Side effects wrt register allocation */
-
- if (flags & PFS_FLAG_SAT) {
- vop |= R300_ALU_OUTC_CLAMP;
- sop |= R300_ALU_OUTA_CLAMP;
- }
-
- /* Throw the pieces together and get ALU/1 */
- if (emit_vop) {
- code->alu.inst[pos].inst0 |= vop;
-
- code->alu.inst[pos].inst1 |= hwdest << R300_ALU_DSTC_SHIFT;
-
- if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
- if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
- code->alu.inst[pos].inst1 |=
- (mask & WRITEMASK_XYZ) <<
- R300_ALU_DSTC_OUTPUT_MASK_SHIFT;
- } else
- assert(0);
- } else {
- code->alu.inst[pos].inst1 |=
- (mask & WRITEMASK_XYZ) <<
- R300_ALU_DSTC_REG_MASK_SHIFT;
-
- cs->hwtemps[hwdest].vector_valid = pos + 1;
- }
- }
-
- /* And now ALU/3 */
- if (emit_sop) {
- code->alu.inst[pos].inst2 |= sop;
-
- if (mask & WRITEMASK_W) {
- if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
- if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
- code->alu.inst[pos].inst3 |=
- (hwdest << R300_ALU_DSTA_SHIFT) |
- R300_ALU_DSTA_OUTPUT;
- } else if (REG_GET_INDEX(dest) ==
- FRAG_RESULT_DEPR) {
- code->alu.inst[pos].inst3 |=
- R300_ALU_DSTA_DEPTH;
- } else
- assert(0);
- } else {
- code->alu.inst[pos].inst3 |=
- (hwdest << R300_ALU_DSTA_SHIFT) |
- R300_ALU_DSTA_REG;
-
- cs->hwtemps[hwdest].scalar_valid = pos + 1;
- }
- }
- }
-
- return;
-}
-
-static GLfloat SinCosConsts[2][4] = {
- {
- 1.273239545, // 4/PI
- -0.405284735, // -4/(PI*PI)
- 3.141592654, // PI
- 0.2225 // weight
- },
- {
- 0.75,
- 0.0,
- 0.159154943, // 1/(2*PI)
- 6.283185307 // 2*PI
- }
-};
-
-/**
- * Emit a LIT instruction.
- * \p flags may be PFS_FLAG_SAT
- *
- * Definition of LIT (from ARB_fragment_program):
- * tmp = VectorLoad(op0);
- * if (tmp.x < 0) tmp.x = 0;
- * if (tmp.y < 0) tmp.y = 0;
- * if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
- * else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
- * result.x = 1.0;
- * result.y = tmp.x;
- * result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0;
- * result.w = 1.0;
- *
- * The longest path of computation is the one leading to result.z,
- * consisting of 5 operations. This implementation of LIT takes
- * 5 slots. So unless there's some special undocumented opcode,
- * this implementation is potentially optimal. Unfortunately,
- * emit_arith is a bit too conservative because it doesn't understand
- * partial writes to the vector component.
- */
-static const GLfloat LitConst[4] =
- { 127.999999, 127.999999, 127.999999, -127.999999 };
-
-static void emit_lit(struct r300_pfs_compile_state *cs,
- GLuint dest, int mask, GLuint src, int flags)
-{
- COMPILE_STATE;
- GLuint cnst;
- int needTemporary;
- GLuint temp;
-
- cnst = emit_const4fv(cs, LitConst);
-
- needTemporary = 0;
- if ((mask & WRITEMASK_XYZW) != WRITEMASK_XYZW) {
- needTemporary = 1;
- } else if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
- // LIT is typically followed by DP3/DP4, so there's no point
- // in creating special code for this case
- needTemporary = 1;
- }
-
- if (needTemporary) {
- temp = keep(get_temp_reg(cs));
- } else {
- temp = keep(dest);
- }
-
- // Note: The order of emit_arith inside the slots is relevant,
- // because emit_arith only looks at scalar vs. vector when resolving
- // dependencies, and it does not consider individual vector components,
- // so swizzling between the two parts can create fake dependencies.
-
- // First slot
- emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_XY,
- keep(src), pfs_zero, undef, 0);
- emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_W, src, cnst, undef, 0);
-
- // Second slot
- emit_arith(cs, PFS_OP_MIN, temp, WRITEMASK_Z,
- swizzle(temp, W, W, W, W), cnst, undef, 0);
- emit_arith(cs, PFS_OP_LG2, temp, WRITEMASK_W,
- swizzle(temp, Y, Y, Y, Y), undef, undef, 0);
-
- // Third slot
- // If desired, we saturate the y result here.
- // This does not affect the use as a condition variable in the CMP later
- emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W,
- temp, swizzle(temp, Z, Z, Z, Z), pfs_zero, 0);
- emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_Y,
- swizzle(temp, X, X, X, X), pfs_one, pfs_zero, flags);
-
- // Fourth slot
- emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_X,
- pfs_one, pfs_one, pfs_zero, 0);
- emit_arith(cs, PFS_OP_EX2, temp, WRITEMASK_W, temp, undef, undef, 0);
-
- // Fifth slot
- emit_arith(cs, PFS_OP_CMP, temp, WRITEMASK_Z,
- pfs_zero, swizzle(temp, W, W, W, W),
- negate(swizzle(temp, Y, Y, Y, Y)), flags);
- emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W, pfs_one, pfs_one,
- pfs_zero, 0);
-
- if (needTemporary) {
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- temp, pfs_one, pfs_zero, flags);
- free_temp(cs, temp);
- } else {
- // Decrease refcount of the destination
- t_hw_dst(cs, dest, GL_FALSE, cs->nrslots);
- }
-}
-
-static GLboolean parse_program(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- struct gl_fragment_program *mp = &fp->mesa_program;
- const struct prog_instruction *inst = mp->Base.Instructions;
- struct prog_instruction *fpi;
- GLuint src[3], dest, temp[2];
- int flags, mask = 0;
- int const_sin[2];
-
- if (!inst || inst[0].Opcode == OPCODE_END) {
- ERROR("empty program?\n");
- return GL_FALSE;
- }
-
- for (fpi = mp->Base.Instructions; fpi->Opcode != OPCODE_END; fpi++) {
- if (fpi->SaturateMode == SATURATE_ZERO_ONE)
- flags = PFS_FLAG_SAT;
- else
- flags = 0;
-
- if (fpi->Opcode != OPCODE_KIL) {
- dest = t_dst(cs, fpi->DstReg);
- mask = fpi->DstReg.WriteMask;
- }
-
- switch (fpi->Opcode) {
- case OPCODE_ABS:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- absolute(src[0]), pfs_one, pfs_zero, flags);
- break;
- case OPCODE_ADD:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], pfs_one, src[1], flags);
- break;
- case OPCODE_CMP:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- src[2] = t_src(cs, fpi->SrcReg[2]);
- /* ARB_f_p - if src0.c < 0.0 ? src1.c : src2.c
- * r300 - if src2.c < 0.0 ? src1.c : src0.c
- */
- emit_arith(cs, PFS_OP_CMP, dest, mask,
- src[2], src[1], src[0], flags);
- break;
- case OPCODE_COS:
- /*
- * cos using a parabola (see SIN):
- * cos(x):
- * x = (x/(2*PI))+0.75
- * x = frac(x)
- * x = (x*2*PI)-PI
- * result = sin(x)
- */
- temp[0] = get_temp_reg(cs);
- const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
- const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
- /* add 0.5*PI and do range reduction */
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
- swizzle(src[0], X, X, X, X),
- swizzle(const_sin[1], Z, Z, Z, Z),
- swizzle(const_sin[1], X, X, X, X), 0);
-
- emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
- swizzle(temp[0], X, X, X, X),
- undef, undef, 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W), //2*PI
- negate(swizzle(const_sin[0], Z, Z, Z, Z)), //-PI
- 0);
-
- /* SIN */
-
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
- Z, Z, Z,
- Z),
- const_sin[0], pfs_zero, 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
- swizzle(temp[0], Y, Y, Y, Y),
- absolute(swizzle(temp[0], Z, Z, Z, Z)),
- swizzle(temp[0], X, X, X, X), 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
- swizzle(temp[0], X, X, X, X),
- absolute(swizzle(temp[0], X, X, X, X)),
- negate(swizzle(temp[0], X, X, X, X)), 0);
-
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- swizzle(temp[0], Y, Y, Y, Y),
- swizzle(const_sin[0], W, W, W, W),
- swizzle(temp[0], X, X, X, X), flags);
-
- free_temp(cs, temp[0]);
- break;
- case OPCODE_DP3:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_DP3, dest, mask,
- src[0], src[1], undef, flags);
- break;
- case OPCODE_DP4:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_DP4, dest, mask,
- src[0], src[1], undef, flags);
- break;
- case OPCODE_DPH:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- /* src0.xyz1 -> temp
- * DP4 dest, temp, src1
- */
- emit_arith(cs, PFS_OP_DP4, dest, mask,
- swizzle(src[0], X, Y, Z, ONE), src[1],
- undef, flags);
- break;
- case OPCODE_DST:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- /* dest.y = src0.y * src1.y */
- if (mask & WRITEMASK_Y)
- emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Y,
- keep(src[0]), keep(src[1]),
- pfs_zero, flags);
- /* dest.z = src0.z */
- if (mask & WRITEMASK_Z)
- emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Z,
- src[0], pfs_one, pfs_zero, flags);
- /* result.x = 1.0
- * result.w = src1.w */
- if (mask & WRITEMASK_XW) {
- REG_SET_VSWZ(src[1], SWIZZLE_111); /*Cheat */
- emit_arith(cs, PFS_OP_MAD, dest,
- mask & WRITEMASK_XW,
- src[1], pfs_one, pfs_zero, flags);
- }
- break;
- case OPCODE_EX2:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_EX2, dest, mask,
- src[0], undef, undef, flags);
- break;
- case OPCODE_FLR:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- temp[0] = get_temp_reg(cs);
- /* FRC temp, src0
- * MAD dest, src0, 1.0, -temp
- */
- emit_arith(cs, PFS_OP_FRC, temp[0], mask,
- keep(src[0]), undef, undef, 0);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], pfs_one, negate(temp[0]), flags);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_FRC:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_FRC, dest, mask,
- src[0], undef, undef, flags);
- break;
- case OPCODE_KIL:
- emit_tex(cs, fpi, R300_TEX_OP_KIL);
- break;
- case OPCODE_LG2:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_LG2, dest, mask,
- src[0], undef, undef, flags);
- break;
- case OPCODE_LIT:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- emit_lit(cs, dest, mask, src[0], flags);
- break;
- case OPCODE_LRP:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- src[2] = t_src(cs, fpi->SrcReg[2]);
- /* result = tmp0tmp1 + (1 - tmp0)tmp2
- * = tmp0tmp1 + tmp2 + (-tmp0)tmp2
- * MAD temp, -tmp0, tmp2, tmp2
- * MAD result, tmp0, tmp1, temp
- */
- temp[0] = get_temp_reg(cs);
- emit_arith(cs, PFS_OP_MAD, temp[0], mask,
- negate(keep(src[0])), keep(src[2]), src[2],
- 0);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], src[1], temp[0], flags);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_MAD:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- src[2] = t_src(cs, fpi->SrcReg[2]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], src[1], src[2], flags);
- break;
- case OPCODE_MAX:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MAX, dest, mask,
- src[0], src[1], undef, flags);
- break;
- case OPCODE_MIN:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MIN, dest, mask,
- src[0], src[1], undef, flags);
- break;
- case OPCODE_MOV:
- case OPCODE_SWZ:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], pfs_one, pfs_zero, flags);
- break;
- case OPCODE_MUL:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], src[1], pfs_zero, flags);
- break;
- case OPCODE_POW:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- src[1] = t_scalar_src(cs, fpi->SrcReg[1]);
- temp[0] = get_temp_reg(cs);
- emit_arith(cs, PFS_OP_LG2, temp[0], WRITEMASK_W,
- src[0], undef, undef, 0);
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
- temp[0], src[1], pfs_zero, 0);
- emit_arith(cs, PFS_OP_EX2, dest, fpi->DstReg.WriteMask,
- temp[0], undef, undef, 0);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_RCP:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_RCP, dest, mask,
- src[0], undef, undef, flags);
- break;
- case OPCODE_RSQ:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_RSQ, dest, mask,
- absolute(src[0]), pfs_zero, pfs_zero, flags);
- break;
- case OPCODE_SCS:
- /*
- * scs using a parabola :
- * scs(x):
- * result.x = sin(-abs(x)+0.5*PI) (cos)
- * result.y = sin(x) (sin)
- *
- */
- temp[0] = get_temp_reg(cs);
- temp[1] = get_temp_reg(cs);
- const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
- const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
- /* x = -abs(x)+0.5*PI */
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(const_sin[0], Z, Z, Z, Z), //PI
- pfs_half,
- negate(abs
- (swizzle(keep(src[0]), X, X, X, X))),
- 0);
-
- /* C*x (sin) */
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
- swizzle(const_sin[0], Y, Y, Y, Y),
- swizzle(keep(src[0]), X, X, X, X),
- pfs_zero, 0);
-
- /* B*x, C*x (cos) */
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
- Z, Z, Z,
- Z),
- const_sin[0], pfs_zero, 0);
-
- /* B*x (sin) */
- emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
- swizzle(const_sin[0], X, X, X, X),
- keep(src[0]), pfs_zero, 0);
-
- /* y = B*x + C*x*abs(x) (sin) */
- emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_Z,
- absolute(src[0]),
- swizzle(temp[0], W, W, W, W),
- swizzle(temp[1], W, W, W, W), 0);
-
- /* y = B*x + C*x*abs(x) (cos) */
- emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
- swizzle(temp[0], Y, Y, Y, Y),
- absolute(swizzle(temp[0], Z, Z, Z, Z)),
- swizzle(temp[0], X, X, X, X), 0);
-
- /* y*abs(y) - y (cos), y*abs(y) - y (sin) */
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_X | WRITEMASK_Y, swizzle(temp[1],
- W, Z, Y,
- X),
- absolute(swizzle(temp[1], W, Z, Y, X)),
- negate(swizzle(temp[1], W, Z, Y, X)), 0);
-
- /* dest.xy = mad(temp.xy, P, temp2.wz) */
- emit_arith(cs, PFS_OP_MAD, dest,
- mask & (WRITEMASK_X | WRITEMASK_Y), temp[0],
- swizzle(const_sin[0], W, W, W, W),
- swizzle(temp[1], W, Z, Y, X), flags);
-
- free_temp(cs, temp[0]);
- free_temp(cs, temp[1]);
- break;
- case OPCODE_SGE:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- temp[0] = get_temp_reg(cs);
- /* temp = src0 - src1
- * dest.c = (temp.c < 0.0) ? 0 : 1
- */
- emit_arith(cs, PFS_OP_MAD, temp[0], mask,
- src[0], pfs_one, negate(src[1]), 0);
- emit_arith(cs, PFS_OP_CMP, dest, mask,
- pfs_one, pfs_zero, temp[0], 0);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_SIN:
- /*
- * using a parabola:
- * sin(x) = 4/pi * x + -4/(pi*pi) * x * abs(x)
- * extra precision is obtained by weighting against
- * itself squared.
- */
-
- temp[0] = get_temp_reg(cs);
- const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
- const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
- /* do range reduction */
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
- swizzle(keep(src[0]), X, X, X, X),
- swizzle(const_sin[1], Z, Z, Z, Z),
- pfs_half, 0);
-
- emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
- swizzle(temp[0], X, X, X, X),
- undef, undef, 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W), //2*PI
- negate(swizzle(const_sin[0], Z, Z, Z, Z)), //PI
- 0);
-
- /* SIN */
-
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
- Z, Z, Z,
- Z),
- const_sin[0], pfs_zero, 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
- swizzle(temp[0], Y, Y, Y, Y),
- absolute(swizzle(temp[0], Z, Z, Z, Z)),
- swizzle(temp[0], X, X, X, X), 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
- swizzle(temp[0], X, X, X, X),
- absolute(swizzle(temp[0], X, X, X, X)),
- negate(swizzle(temp[0], X, X, X, X)), 0);
-
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- swizzle(temp[0], Y, Y, Y, Y),
- swizzle(const_sin[0], W, W, W, W),
- swizzle(temp[0], X, X, X, X), flags);
-
- free_temp(cs, temp[0]);
- break;
- case OPCODE_SLT:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- temp[0] = get_temp_reg(cs);
- /* temp = src0 - src1
- * dest.c = (temp.c < 0.0) ? 1 : 0
- */
- emit_arith(cs, PFS_OP_MAD, temp[0], mask,
- src[0], pfs_one, negate(src[1]), 0);
- emit_arith(cs, PFS_OP_CMP, dest, mask,
- pfs_zero, pfs_one, temp[0], 0);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_SUB:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], pfs_one, negate(src[1]), flags);
- break;
- case OPCODE_TEX:
- emit_tex(cs, fpi, R300_TEX_OP_LD);
- break;
- case OPCODE_TXB:
- emit_tex(cs, fpi, R300_TEX_OP_TXB);
- break;
- case OPCODE_TXP:
- emit_tex(cs, fpi, R300_TEX_OP_TXP);
- break;
- case OPCODE_XPD:{
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- temp[0] = get_temp_reg(cs);
- /* temp = src0.zxy * src1.yzx */
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_XYZ, swizzle(keep(src[0]),
- Z, X, Y, W),
- swizzle(keep(src[1]), Y, Z, X, W),
- pfs_zero, 0);
- /* dest.xyz = src0.yzx * src1.zxy - temp
- * dest.w = undefined
- * */
- emit_arith(cs, PFS_OP_MAD, dest,
- mask & WRITEMASK_XYZ, swizzle(src[0],
- Y, Z,
- X, W),
- swizzle(src[1], Z, X, Y, W),
- negate(temp[0]), flags);
- /* cleanup */
- free_temp(cs, temp[0]);
- break;
- }
- default:
- ERROR("unknown fpi->Opcode %d\n", fpi->Opcode);
- break;
- }
-
- if (fp->error)
- return GL_FALSE;
-
- }
-
- return GL_TRUE;
-}
-
-static void insert_wpos(struct gl_program *prog)
-{
static gl_state_index tokens[STATE_LENGTH] = {
STATE_INTERNAL, STATE_R300_WINDOW_DIMENSION, 0, 0, 0
};
struct prog_instruction *fpi;
GLuint window_index;
int i = 0;
- GLuint tempregi = prog->NumTemporaries;
- /* should do something else if no temps left... */
- prog->NumTemporaries++;
+ GLuint tempregi = radeonCompilerAllocateTemporary(&compiler->compiler);
- fpi = _mesa_alloc_instructions(prog->NumInstructions + 3);
- _mesa_init_instructions(fpi, prog->NumInstructions + 3);
+ fpi = radeonClauseInsertInstructions(&compiler->compiler, &compiler->compiler.Clauses[0], 0, 3);
/* perspective divide */
fpi[i].Opcode = OPCODE_RCP;
@@ -2121,7 +118,7 @@ static void insert_wpos(struct gl_program *prog)
i++;
/* viewport transformation */
- window_index = _mesa_add_state_reference(prog->Parameters, tokens);
+ window_index = _mesa_add_state_reference(compiler->fp->mesa_program.Base.Parameters, tokens);
fpi[i].Opcode = OPCODE_MAD;
@@ -2146,193 +143,42 @@ static void insert_wpos(struct gl_program *prog)
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ZERO);
i++;
- _mesa_copy_instructions(&fpi[i], prog->Instructions,
- prog->NumInstructions);
-
- free(prog->Instructions);
-
- prog->Instructions = fpi;
-
- prog->NumInstructions += i;
- fpi = &prog->Instructions[prog->NumInstructions - 1];
-
- assert(fpi->Opcode == OPCODE_END);
-
- for (fpi = &prog->Instructions[3]; fpi->Opcode != OPCODE_END; fpi++) {
- for (i = 0; i < 3; i++)
- if (fpi->SrcReg[i].File == PROGRAM_INPUT &&
- fpi->SrcReg[i].Index == FRAG_ATTRIB_WPOS) {
- fpi->SrcReg[i].File = PROGRAM_TEMPORARY;
- fpi->SrcReg[i].Index = tempregi;
- }
- }
-}
-
-/* - Init structures
- * - Determine what hwregs each input corresponds to
- */
-static void init_program(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- struct gl_fragment_program *mp = &fp->mesa_program;
- struct prog_instruction *fpi;
- GLuint InputsRead = mp->Base.InputsRead;
- GLuint temps_used = 0; /* for fp->temps[] */
- int i, j;
-
- /* New compile, reset tracking data */
- fp->optimization =
- driQueryOptioni(&cs->r300->radeon.optionCache, "fp_optimization");
- fp->translated = GL_FALSE;
- fp->error = GL_FALSE;
- fp->WritesDepth = GL_FALSE;
- code->tex.length = 0;
- code->cur_node = 0;
- code->first_node_has_tex = 0;
- code->const_nr = 0;
- code->max_temp_idx = 0;
- code->node[0].alu_end = -1;
- code->node[0].tex_end = -1;
-
- for (i = 0; i < PFS_MAX_ALU_INST; i++) {
- for (j = 0; j < 3; j++) {
- cs->slot[i].vsrc[j] = SRC_CONST;
- cs->slot[i].ssrc[j] = SRC_CONST;
- }
- }
-
- /* Work out what temps the Mesa inputs correspond to, this must match
- * what setup_rs_unit does, which shouldn't be a problem as rs_unit
- * configures itself based on the fragprog's InputsRead
- *
- * NOTE: this depends on get_hw_temp() allocating registers in order,
- * starting from register 0.
- */
-
- /* Texcoords come first */
- for (i = 0; i < cs->r300->radeon.glCtx->Const.MaxTextureUnits; i++) {
- if (InputsRead & (FRAG_BIT_TEX0 << i)) {
- cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0;
- cs->inputs[FRAG_ATTRIB_TEX0 + i].reg =
- get_hw_temp(cs, 0);
- }
- }
- InputsRead &= ~FRAG_BITS_TEX_ANY;
-
- /* fragment position treated as a texcoord */
- if (InputsRead & FRAG_BIT_WPOS) {
- cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0;
- cs->inputs[FRAG_ATTRIB_WPOS].reg = get_hw_temp(cs, 0);
- insert_wpos(&mp->Base);
- }
- InputsRead &= ~FRAG_BIT_WPOS;
-
- /* Then primary colour */
- if (InputsRead & FRAG_BIT_COL0) {
- cs->inputs[FRAG_ATTRIB_COL0].refcount = 0;
- cs->inputs[FRAG_ATTRIB_COL0].reg = get_hw_temp(cs, 0);
- }
- InputsRead &= ~FRAG_BIT_COL0;
-
- /* Secondary color */
- if (InputsRead & FRAG_BIT_COL1) {
- cs->inputs[FRAG_ATTRIB_COL1].refcount = 0;
- cs->inputs[FRAG_ATTRIB_COL1].reg = get_hw_temp(cs, 0);
- }
- InputsRead &= ~FRAG_BIT_COL1;
-
- /* Anything else */
- if (InputsRead) {
- WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead);
- /* force read from hwreg 0 for now */
- for (i = 0; i < 32; i++)
- if (InputsRead & (1 << i))
- cs->inputs[i].reg = 0;
- }
-
- /* Pre-parse the mesa program, grabbing refcounts on input/temp regs.
- * That way, we can free up the reg when it's no longer needed
- */
- if (!mp->Base.Instructions) {
- ERROR("No instructions found in program\n");
- return;
- }
-
- for (fpi = mp->Base.Instructions; fpi->Opcode != OPCODE_END; fpi++) {
- int idx;
-
- for (i = 0; i < 3; i++) {
- idx = fpi->SrcReg[i].Index;
- switch (fpi->SrcReg[i].File) {
- case PROGRAM_TEMPORARY:
- if (!(temps_used & (1 << idx))) {
- cs->temps[idx].reg = -1;
- cs->temps[idx].refcount = 1;
- temps_used |= (1 << idx);
- } else
- cs->temps[idx].refcount++;
- break;
- case PROGRAM_INPUT:
- cs->inputs[idx].refcount++;
- break;
- default:
- break;
+ for (; i < compiler->compiler.Clauses[0].NumInstructions; ++i) {
+ int reg;
+ for (reg = 0; reg < 3; reg++) {
+ if (fpi[i].SrcReg[reg].File == PROGRAM_INPUT &&
+ fpi[i].SrcReg[reg].Index == FRAG_ATTRIB_WPOS) {
+ fpi[i].SrcReg[reg].File = PROGRAM_TEMPORARY;
+ fpi[i].SrcReg[reg].Index = tempregi;
}
}
-
- idx = fpi->DstReg.Index;
- if (fpi->DstReg.File == PROGRAM_TEMPORARY) {
- if (!(temps_used & (1 << idx))) {
- cs->temps[idx].reg = -1;
- cs->temps[idx].refcount = 1;
- temps_used |= (1 << idx);
- } else
- cs->temps[idx].refcount++;
- }
}
- cs->temp_in_use = temps_used;
}
-static void update_params(r300ContextPtr r300, struct r300_fragment_program *fp)
-{
- struct gl_fragment_program *mp = &fp->mesa_program;
-
- /* Ask Mesa nicely to fill in ParameterValues for us */
- if (mp->Base.Parameters)
- _mesa_load_state_parameters(r300->radeon.glCtx, mp->Base.Parameters);
-}
void r300TranslateFragmentShader(r300ContextPtr r300,
struct r300_fragment_program *fp)
{
if (!fp->translated) {
- struct r300_pfs_compile_state cs;
+ struct r300_fragment_program_compiler compiler;
- _mesa_memset(&cs, 0, sizeof(cs));
- cs.r300 = r300;
- cs.fp = fp;
- init_program(&cs);
+ compiler.r300 = r300;
+ compiler.fp = fp;
+ compiler.code = &fp->code;
- if (parse_program(&cs) == GL_FALSE) {
- dump_program(fp, &fp->code);
- return;
- }
+ radeonCompilerInit(&compiler.compiler, r300->radeon.glCtx, &fp->mesa_program.Base);
+
+ insert_WPOS_trailer(&compiler);
+
+ if (!r300FragmentProgramEmit(&compiler))
+ fp->error = GL_TRUE;
- /* Finish off */
- fp->code.node[fp->code.cur_node].alu_end =
- cs.nrslots - fp->code.node[fp->code.cur_node].alu_offset - 1;
- if (fp->code.node[fp->code.cur_node].tex_end < 0)
- fp->code.node[fp->code.cur_node].tex_end = 0;
- fp->code.alu_offset = 0;
- fp->code.alu_end = cs.nrslots - 1;
- fp->code.tex_offset = 0;
- fp->code.tex_end = fp->code.tex.length ? fp->code.tex.length - 1 : 0;
- assert(fp->code.node[fp->code.cur_node].alu_end >= 0);
- assert(fp->code.alu_end >= 0);
+ radeonCompilerCleanup(&compiler.compiler);
- fp->translated = GL_TRUE;
- if (RADEON_DEBUG & DEBUG_PIXEL)
- dump_program(fp, &fp->code);
+ if (!fp->error)
+ fp->translated = GL_TRUE;
+ if (fp->error || (RADEON_DEBUG & DEBUG_PIXEL))
+ r300FragmentProgramDump(fp, &fp->code);
r300UpdateStateParameters(r300->radeon.glCtx, _NEW_PROGRAM);
}
@@ -2340,8 +186,9 @@ void r300TranslateFragmentShader(r300ContextPtr r300,
}
/* just some random things... */
-static void dump_program(struct r300_fragment_program *fp,
- struct r300_fragment_program_code *code)
+void r300FragmentProgramDump(
+ struct r300_fragment_program *fp,
+ struct r300_fragment_program_code *code)
{
int n, i, j;
static int pc = 0;
diff --git a/src/mesa/drivers/dri/r300/r300_fragprog.h b/src/mesa/drivers/dri/r300/r300_fragprog.h
index 561d7c6423..8c836c4bda 100644
--- a/src/mesa/drivers/dri/r300/r300_fragprog.h
+++ b/src/mesa/drivers/dri/r300/r300_fragprog.h
@@ -40,6 +40,7 @@
#include "shader/prog_instruction.h"
#include "r300_context.h"
+#include "radeon_program.h"
/* supported hw opcodes */
#define PFS_OP_MAD 0
@@ -136,4 +137,23 @@ struct r300_fragment_program;
extern void r300TranslateFragmentShader(r300ContextPtr r300,
struct r300_fragment_program *fp);
+
+/**
+ * Used internally by the r300 fragment program code to store compile-time
+ * only data.
+ */
+struct r300_fragment_program_compiler {
+ r300ContextPtr r300;
+ struct r300_fragment_program *fp;
+ struct r300_fragment_program_code *code;
+ struct radeon_compiler compiler;
+};
+
+extern GLboolean r300FragmentProgramEmit(struct r300_fragment_program_compiler *compiler);
+
+
+extern void r300FragmentProgramDump(
+ struct r300_fragment_program *fp,
+ struct r300_fragment_program_code *code);
+
#endif
diff --git a/src/mesa/drivers/dri/r300/r300_fragprog_emit.c b/src/mesa/drivers/dri/r300/r300_fragprog_emit.c
new file mode 100644
index 0000000000..fe8a347a62
--- /dev/null
+++ b/src/mesa/drivers/dri/r300/r300_fragprog_emit.c
@@ -0,0 +1,2232 @@
+/*
+ * Copyright (C) 2005 Ben Skeggs.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+/**
+ * \file
+ *
+ * Emit the r300_fragment_program_code that can be understood by the hardware.
+ * Input is a pre-transformed radeon_program.
+ *
+ * \author Ben Skeggs <darktama@iinet.net.au>
+ *
+ * \author Jerome Glisse <j.glisse@gmail.com>
+ *
+ * \todo FogOption
+ *
+ * \todo Verify results of opcodes for accuracy, I've only checked them in
+ * specific cases.
+ */
+
+#include "glheader.h"
+#include "macros.h"
+#include "enums.h"
+#include "shader/prog_instruction.h"
+#include "shader/prog_parameter.h"
+#include "shader/prog_print.h"
+
+#include "r300_context.h"
+#include "r300_fragprog.h"
+#include "r300_reg.h"
+#include "r300_state.h"
+
+/* Mapping Mesa registers to R300 temporaries */
+struct reg_acc {
+ int reg; /* Assigned hw temp */
+ unsigned int refcount; /* Number of uses by mesa program */
+};
+
+/**
+ * Describe the current lifetime information for an R300 temporary
+ */
+struct reg_lifetime {
+ /* Index of the first slot where this register is free in the sense
+ that it can be used as a new destination register.
+ This is -1 if the register has been assigned to a Mesa register
+ and the last access to the register has not yet been emitted */
+ int free;
+
+ /* Index of the first slot where this register is currently reserved.
+ This is used to stop e.g. a scalar operation from being moved
+ before the allocation time of a register that was first allocated
+ for a vector operation. */
+ int reserved;
+
+ /* Index of the first slot in which the register can be used as a
+ source without losing the value that is written by the last
+ emitted instruction that writes to the register */
+ int vector_valid;
+ int scalar_valid;
+
+ /* Index to the slot where the register was last read.
+ This is also the first slot in which the register may be written again */
+ int vector_lastread;
+ int scalar_lastread;
+};
+
+/**
+ * Store usage information about an ALU instruction slot during the
+ * compilation of a fragment program.
+ */
+#define SLOT_SRC_VECTOR (1<<0)
+#define SLOT_SRC_SCALAR (1<<3)
+#define SLOT_SRC_BOTH (SLOT_SRC_VECTOR | SLOT_SRC_SCALAR)
+#define SLOT_OP_VECTOR (1<<16)
+#define SLOT_OP_SCALAR (1<<17)
+#define SLOT_OP_BOTH (SLOT_OP_VECTOR | SLOT_OP_SCALAR)
+
+struct r300_pfs_compile_slot {
+ /* Bitmask indicating which parts of the slot are used, using SLOT_ constants
+ defined above */
+ unsigned int used;
+
+ /* Selected sources */
+ int vsrc[3];
+ int ssrc[3];
+};
+
+/**
+ * Store information during compilation of fragment programs.
+ */
+struct r300_pfs_compile_state {
+ struct r300_fragment_program_compiler *compiler;
+
+ int nrslots; /* number of ALU slots used so far */
+
+ /* Track which (parts of) slots are already filled with instructions */
+ struct r300_pfs_compile_slot slot[PFS_MAX_ALU_INST];
+
+ /* Track the validity of R300 temporaries */
+ struct reg_lifetime hwtemps[PFS_NUM_TEMP_REGS];
+
+ /* Used to map Mesa's inputs/temps onto hardware temps */
+ int temp_in_use;
+ struct reg_acc temps[PFS_NUM_TEMP_REGS];
+ struct reg_acc inputs[32]; /* don't actually need 32... */
+
+ /* Track usage of hardware temps, for register allocation,
+ * indirection detection, etc. */
+ GLuint used_in_node;
+ GLuint dest_in_node;
+};
+
+
+/*
+ * Usefull macros and values
+ */
+#define ERROR(fmt, args...) do { \
+ fprintf(stderr, "%s::%s(): " fmt "\n", \
+ __FILE__, __FUNCTION__, ##args); \
+ fp->error = GL_TRUE; \
+ } while(0)
+
+#define PFS_INVAL 0xFFFFFFFF
+#define COMPILE_STATE \
+ struct r300_fragment_program *fp = cs->compiler->fp; \
+ struct r300_fragment_program_code *code = cs->compiler->code; \
+ (void)code; (void)fp
+
+#define SWIZZLE_XYZ 0
+#define SWIZZLE_XXX 1
+#define SWIZZLE_YYY 2
+#define SWIZZLE_ZZZ 3
+#define SWIZZLE_WWW 4
+#define SWIZZLE_YZX 5
+#define SWIZZLE_ZXY 6
+#define SWIZZLE_WZY 7
+#define SWIZZLE_111 8
+#define SWIZZLE_000 9
+#define SWIZZLE_HHH 10
+
+#define swizzle(r, x, y, z, w) do_swizzle(cs, r, \
+ ((SWIZZLE_##x<<0)| \
+ (SWIZZLE_##y<<3)| \
+ (SWIZZLE_##z<<6)| \
+ (SWIZZLE_##w<<9)), \
+ 0)
+
+#define REG_TYPE_INPUT 0
+#define REG_TYPE_OUTPUT 1
+#define REG_TYPE_TEMP 2
+#define REG_TYPE_CONST 3
+
+#define REG_TYPE_SHIFT 0
+#define REG_INDEX_SHIFT 2
+#define REG_VSWZ_SHIFT 8
+#define REG_SSWZ_SHIFT 13
+#define REG_NEGV_SHIFT 18
+#define REG_NEGS_SHIFT 19
+#define REG_ABS_SHIFT 20
+#define REG_NO_USE_SHIFT 21 // Hack for refcounting
+#define REG_VALID_SHIFT 22 // Does the register contain a defined value?
+#define REG_BUILTIN_SHIFT 23 // Is it a builtin (like all zero/all one)?
+
+#define REG_TYPE_MASK (0x03 << REG_TYPE_SHIFT)
+#define REG_INDEX_MASK (0x3F << REG_INDEX_SHIFT)
+#define REG_VSWZ_MASK (0x1F << REG_VSWZ_SHIFT)
+#define REG_SSWZ_MASK (0x1F << REG_SSWZ_SHIFT)
+#define REG_NEGV_MASK (0x01 << REG_NEGV_SHIFT)
+#define REG_NEGS_MASK (0x01 << REG_NEGS_SHIFT)
+#define REG_ABS_MASK (0x01 << REG_ABS_SHIFT)
+#define REG_NO_USE_MASK (0x01 << REG_NO_USE_SHIFT)
+#define REG_VALID_MASK (0x01 << REG_VALID_SHIFT)
+#define REG_BUILTIN_MASK (0x01 << REG_BUILTIN_SHIFT)
+
+#define REG(type, index, vswz, sswz, nouse, valid, builtin) \
+ (((type << REG_TYPE_SHIFT) & REG_TYPE_MASK) | \
+ ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK) | \
+ ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK) | \
+ ((valid << REG_VALID_SHIFT) & REG_VALID_MASK) | \
+ ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK) | \
+ ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK) | \
+ ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
+#define REG_GET_TYPE(reg) \
+ ((reg & REG_TYPE_MASK) >> REG_TYPE_SHIFT)
+#define REG_GET_INDEX(reg) \
+ ((reg & REG_INDEX_MASK) >> REG_INDEX_SHIFT)
+#define REG_GET_VSWZ(reg) \
+ ((reg & REG_VSWZ_MASK) >> REG_VSWZ_SHIFT)
+#define REG_GET_SSWZ(reg) \
+ ((reg & REG_SSWZ_MASK) >> REG_SSWZ_SHIFT)
+#define REG_GET_NO_USE(reg) \
+ ((reg & REG_NO_USE_MASK) >> REG_NO_USE_SHIFT)
+#define REG_GET_VALID(reg) \
+ ((reg & REG_VALID_MASK) >> REG_VALID_SHIFT)
+#define REG_GET_BUILTIN(reg) \
+ ((reg & REG_BUILTIN_MASK) >> REG_BUILTIN_SHIFT)
+#define REG_SET_TYPE(reg, type) \
+ reg = ((reg & ~REG_TYPE_MASK) | \
+ ((type << REG_TYPE_SHIFT) & REG_TYPE_MASK))
+#define REG_SET_INDEX(reg, index) \
+ reg = ((reg & ~REG_INDEX_MASK) | \
+ ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK))
+#define REG_SET_VSWZ(reg, vswz) \
+ reg = ((reg & ~REG_VSWZ_MASK) | \
+ ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK))
+#define REG_SET_SSWZ(reg, sswz) \
+ reg = ((reg & ~REG_SSWZ_MASK) | \
+ ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
+#define REG_SET_NO_USE(reg, nouse) \
+ reg = ((reg & ~REG_NO_USE_MASK) | \
+ ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK))
+#define REG_SET_VALID(reg, valid) \
+ reg = ((reg & ~REG_VALID_MASK) | \
+ ((valid << REG_VALID_SHIFT) & REG_VALID_MASK))
+#define REG_SET_BUILTIN(reg, builtin) \
+ reg = ((reg & ~REG_BUILTIN_MASK) | \
+ ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK))
+#define REG_ABS(reg) \
+ reg = (reg | REG_ABS_MASK)
+#define REG_NEGV(reg) \
+ reg = (reg | REG_NEGV_MASK)
+#define REG_NEGS(reg) \
+ reg = (reg | REG_NEGS_MASK)
+
+#define NOP_INST0 ( \
+ (R300_ALU_OUTC_MAD) | \
+ (R300_ALU_ARGC_ZERO << R300_ALU_ARG0C_SHIFT) | \
+ (R300_ALU_ARGC_ZERO << R300_ALU_ARG1C_SHIFT) | \
+ (R300_ALU_ARGC_ZERO << R300_ALU_ARG2C_SHIFT))
+#define NOP_INST1 ( \
+ ((0 | SRC_CONST) << R300_ALU_SRC0C_SHIFT) | \
+ ((0 | SRC_CONST) << R300_ALU_SRC1C_SHIFT) | \
+ ((0 | SRC_CONST) << R300_ALU_SRC2C_SHIFT))
+#define NOP_INST2 ( \
+ (R300_ALU_OUTA_MAD) | \
+ (R300_ALU_ARGA_ZERO << R300_ALU_ARG0A_SHIFT) | \
+ (R300_ALU_ARGA_ZERO << R300_ALU_ARG1A_SHIFT) | \
+ (R300_ALU_ARGA_ZERO << R300_ALU_ARG2A_SHIFT))
+#define NOP_INST3 ( \
+ ((0 | SRC_CONST) << R300_ALU_SRC0A_SHIFT) | \
+ ((0 | SRC_CONST) << R300_ALU_SRC1A_SHIFT) | \
+ ((0 | SRC_CONST) << R300_ALU_SRC2A_SHIFT))
+
+
+/*
+ * Datas structures for fragment program generation
+ */
+
+/* description of r300 native hw instructions */
+static const struct {
+ const char *name;
+ int argc;
+ int v_op;
+ int s_op;
+} r300_fpop[] = {
+ /* *INDENT-OFF* */
+ {"MAD", 3, R300_ALU_OUTC_MAD, R300_ALU_OUTA_MAD},
+ {"DP3", 2, R300_ALU_OUTC_DP3, R300_ALU_OUTA_DP4},
+ {"DP4", 2, R300_ALU_OUTC_DP4, R300_ALU_OUTA_DP4},
+ {"MIN", 2, R300_ALU_OUTC_MIN, R300_ALU_OUTA_MIN},
+ {"MAX", 2, R300_ALU_OUTC_MAX, R300_ALU_OUTA_MAX},
+ {"CMP", 3, R300_ALU_OUTC_CMP, R300_ALU_OUTA_CMP},
+ {"FRC", 1, R300_ALU_OUTC_FRC, R300_ALU_OUTA_FRC},
+ {"EX2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_EX2},
+ {"LG2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_LG2},
+ {"RCP", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RCP},
+ {"RSQ", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RSQ},
+ {"REPL_ALPHA", 1, R300_ALU_OUTC_REPL_ALPHA, PFS_INVAL},
+ {"CMPH", 3, R300_ALU_OUTC_CMPH, PFS_INVAL},
+ /* *INDENT-ON* */
+};
+
+/* vector swizzles r300 can support natively, with a couple of
+ * cases we handle specially
+ *
+ * REG_VSWZ/REG_SSWZ is an index into this table
+ */
+
+/* mapping from SWIZZLE_* to r300 native values for scalar insns */
+#define SWIZZLE_HALF 6
+
+#define MAKE_SWZ3(x, y, z) (MAKE_SWIZZLE4(SWIZZLE_##x, \
+ SWIZZLE_##y, \
+ SWIZZLE_##z, \
+ SWIZZLE_ZERO))
+/* native swizzles */
+static const struct r300_pfs_swizzle {
+ GLuint hash; /* swizzle value this matches */
+ GLuint base; /* base value for hw swizzle */
+ GLuint stride; /* difference in base between arg0/1/2 */
+ GLuint flags;
+} v_swiz[] = {
+ /* *INDENT-OFF* */
+ {MAKE_SWZ3(X, Y, Z), R300_ALU_ARGC_SRC0C_XYZ, 4, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(X, X, X), R300_ALU_ARGC_SRC0C_XXX, 4, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(Y, Y, Y), R300_ALU_ARGC_SRC0C_YYY, 4, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(Z, Z, Z), R300_ALU_ARGC_SRC0C_ZZZ, 4, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(W, W, W), R300_ALU_ARGC_SRC0A, 1, SLOT_SRC_SCALAR},
+ {MAKE_SWZ3(Y, Z, X), R300_ALU_ARGC_SRC0C_YZX, 1, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(Z, X, Y), R300_ALU_ARGC_SRC0C_ZXY, 1, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(W, Z, Y), R300_ALU_ARGC_SRC0CA_WZY, 1, SLOT_SRC_BOTH},
+ {MAKE_SWZ3(ONE, ONE, ONE), R300_ALU_ARGC_ONE, 0, 0},
+ {MAKE_SWZ3(ZERO, ZERO, ZERO), R300_ALU_ARGC_ZERO, 0, 0},
+ {MAKE_SWZ3(HALF, HALF, HALF), R300_ALU_ARGC_HALF, 0, 0},
+ {PFS_INVAL, 0, 0, 0},
+ /* *INDENT-ON* */
+};
+
+/* used during matching of non-native swizzles */
+#define SWZ_X_MASK (7 << 0)
+#define SWZ_Y_MASK (7 << 3)
+#define SWZ_Z_MASK (7 << 6)
+#define SWZ_W_MASK (7 << 9)
+static const struct {
+ GLuint hash; /* used to mask matching swizzle components */
+ int mask; /* actual outmask */
+ int count; /* count of components matched */
+} s_mask[] = {
+ /* *INDENT-OFF* */
+ {SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK, 1 | 2 | 4, 3},
+ {SWZ_X_MASK | SWZ_Y_MASK, 1 | 2, 2},
+ {SWZ_X_MASK | SWZ_Z_MASK, 1 | 4, 2},
+ {SWZ_Y_MASK | SWZ_Z_MASK, 2 | 4, 2},
+ {SWZ_X_MASK, 1, 1},
+ {SWZ_Y_MASK, 2, 1},
+ {SWZ_Z_MASK, 4, 1},
+ {PFS_INVAL, PFS_INVAL, PFS_INVAL}
+ /* *INDENT-ON* */
+};
+
+static const struct {
+ int base; /* hw value of swizzle */
+ int stride; /* difference between SRC0/1/2 */
+ GLuint flags;
+} s_swiz[] = {
+ /* *INDENT-OFF* */
+ {R300_ALU_ARGA_SRC0C_X, 3, SLOT_SRC_VECTOR},
+ {R300_ALU_ARGA_SRC0C_Y, 3, SLOT_SRC_VECTOR},
+ {R300_ALU_ARGA_SRC0C_Z, 3, SLOT_SRC_VECTOR},
+ {R300_ALU_ARGA_SRC0A, 1, SLOT_SRC_SCALAR},
+ {R300_ALU_ARGA_ZERO, 0, 0},
+ {R300_ALU_ARGA_ONE, 0, 0},
+ {R300_ALU_ARGA_HALF, 0, 0}
+ /* *INDENT-ON* */
+};
+
+/* boiler-plate reg, for convenience */
+static const GLuint undef = REG(REG_TYPE_TEMP,
+ 0,
+ SWIZZLE_XYZ,
+ SWIZZLE_W,
+ GL_FALSE,
+ GL_FALSE,
+ GL_FALSE);
+
+/* constant one source */
+static const GLuint pfs_one = REG(REG_TYPE_CONST,
+ 0,
+ SWIZZLE_111,
+ SWIZZLE_ONE,
+ GL_FALSE,
+ GL_TRUE,
+ GL_TRUE);
+
+/* constant half source */
+static const GLuint pfs_half = REG(REG_TYPE_CONST,
+ 0,
+ SWIZZLE_HHH,
+ SWIZZLE_HALF,
+ GL_FALSE,
+ GL_TRUE,
+ GL_TRUE);
+
+/* constant zero source */
+static const GLuint pfs_zero = REG(REG_TYPE_CONST,
+ 0,
+ SWIZZLE_000,
+ SWIZZLE_ZERO,
+ GL_FALSE,
+ GL_TRUE,
+ GL_TRUE);
+
+/*
+ * Common functions prototypes
+ */
+static void emit_arith(struct r300_pfs_compile_state *cs, int op,
+ GLuint dest, int mask,
+ GLuint src0, GLuint src1, GLuint src2, int flags);
+
+/**
+ * Get an R300 temporary that can be written to in the given slot.
+ */
+static int get_hw_temp(struct r300_pfs_compile_state *cs, int slot)
+{
+ COMPILE_STATE;
+ int r;
+
+ for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
+ if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= slot)
+ break;
+ }
+
+ if (r >= PFS_NUM_TEMP_REGS) {
+ ERROR("Out of hardware temps\n");
+ return 0;
+ }
+ // Reserved is used to avoid the following scenario:
+ // R300 temporary X is first assigned to Mesa temporary Y during vector ops
+ // R300 temporary X is then assigned to Mesa temporary Z for further vector ops
+ // Then scalar ops on Mesa temporary Z are emitted and move back in time
+ // to overwrite the value of temporary Y.
+ // End scenario.
+ cs->hwtemps[r].reserved = cs->hwtemps[r].free;
+ cs->hwtemps[r].free = -1;
+
+ // Reset to some value that won't mess things up when the user
+ // tries to read from a temporary that hasn't been assigned a value yet.
+ // In the normal case, vector_valid and scalar_valid should be set to
+ // a sane value by the first emit that writes to this temporary.
+ cs->hwtemps[r].vector_valid = 0;
+ cs->hwtemps[r].scalar_valid = 0;
+
+ if (r > code->max_temp_idx)
+ code->max_temp_idx = r;
+
+ return r;
+}
+
+/**
+ * Get an R300 temporary that will act as a TEX destination register.
+ */
+static int get_hw_temp_tex(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ int r;
+
+ for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
+ if (cs->used_in_node & (1 << r))
+ continue;
+
+ // Note: Be very careful here
+ if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= 0)
+ break;
+ }
+
+ if (r >= PFS_NUM_TEMP_REGS)
+ return get_hw_temp(cs, 0); /* Will cause an indirection */
+
+ cs->hwtemps[r].reserved = cs->hwtemps[r].free;
+ cs->hwtemps[r].free = -1;
+
+ // Reset to some value that won't mess things up when the user
+ // tries to read from a temporary that hasn't been assigned a value yet.
+ // In the normal case, vector_valid and scalar_valid should be set to
+ // a sane value by the first emit that writes to this temporary.
+ cs->hwtemps[r].vector_valid = cs->nrslots;
+ cs->hwtemps[r].scalar_valid = cs->nrslots;
+
+ if (r > code->max_temp_idx)
+ code->max_temp_idx = r;
+
+ return r;
+}
+
+/**
+ * Mark the given hardware register as free.
+ */
+static void free_hw_temp(struct r300_pfs_compile_state *cs, int idx)
+{
+ // Be very careful here. Consider sequences like
+ // MAD r0, r1,r2,r3
+ // TEX r4, ...
+ // The TEX instruction may be moved in front of the MAD instruction
+ // due to the way nodes work. We don't want to alias r1 and r4 in
+ // this case.
+ // I'm certain the register allocation could be further sanitized,
+ // but it's tricky because of stuff that can happen inside emit_tex
+ // and emit_arith.
+ cs->hwtemps[idx].free = cs->nrslots + 1;
+}
+
+/**
+ * Create a new Mesa temporary register.
+ */
+static GLuint get_temp_reg(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+ GLuint index;
+
+ index = ffs(~cs->temp_in_use);
+ if (!index) {
+ ERROR("Out of program temps\n");
+ return r;
+ }
+
+ cs->temp_in_use |= (1 << --index);
+ cs->temps[index].refcount = 0xFFFFFFFF;
+ cs->temps[index].reg = -1;
+
+ REG_SET_TYPE(r, REG_TYPE_TEMP);
+ REG_SET_INDEX(r, index);
+ REG_SET_VALID(r, GL_TRUE);
+ return r;
+}
+
+/**
+ * Create a new Mesa temporary register that will act as the destination
+ * register for a texture read.
+ */
+static GLuint get_temp_reg_tex(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+ GLuint index;
+
+ index = ffs(~cs->temp_in_use);
+ if (!index) {
+ ERROR("Out of program temps\n");
+ return r;
+ }
+
+ cs->temp_in_use |= (1 << --index);
+ cs->temps[index].refcount = 0xFFFFFFFF;
+ cs->temps[index].reg = get_hw_temp_tex(cs);
+
+ REG_SET_TYPE(r, REG_TYPE_TEMP);
+ REG_SET_INDEX(r, index);
+ REG_SET_VALID(r, GL_TRUE);
+ return r;
+}
+
+/**
+ * Free a Mesa temporary and the associated R300 temporary.
+ */
+static void free_temp(struct r300_pfs_compile_state *cs, GLuint r)
+{
+ GLuint index = REG_GET_INDEX(r);
+
+ if (!(cs->temp_in_use & (1 << index)))
+ return;
+
+ if (REG_GET_TYPE(r) == REG_TYPE_TEMP) {
+ free_hw_temp(cs, cs->temps[index].reg);
+ cs->temps[index].reg = -1;
+ cs->temp_in_use &= ~(1 << index);
+ } else if (REG_GET_TYPE(r) == REG_TYPE_INPUT) {
+ free_hw_temp(cs, cs->inputs[index].reg);
+ cs->inputs[index].reg = -1;
+ }
+}
+
+/**
+ * Emit a hardware constant/parameter.
+ *
+ * \p cp Stable pointer to an array of 4 floats.
+ * The pointer must be stable in the sense that it remains to be valid
+ * and hold the contents of the constant/parameter throughout the lifetime
+ * of the fragment program (actually, up until the next time the fragment
+ * program is translated).
+ */
+static GLuint emit_const4fv(struct r300_pfs_compile_state *cs,
+ const GLfloat * cp)
+{
+ COMPILE_STATE;
+ GLuint reg = undef;
+ int index;
+
+ for (index = 0; index < code->const_nr; ++index) {
+ if (code->constant[index] == cp)
+ break;
+ }
+
+ if (index >= code->const_nr) {
+ if (index >= PFS_NUM_CONST_REGS) {
+ ERROR("Out of hw constants!\n");
+ return reg;
+ }
+
+ code->const_nr++;
+ code->constant[index] = cp;
+ }
+
+ REG_SET_TYPE(reg, REG_TYPE_CONST);
+ REG_SET_INDEX(reg, index);
+ REG_SET_VALID(reg, GL_TRUE);
+ return reg;
+}
+
+static inline GLuint negate(GLuint r)
+{
+ REG_NEGS(r);
+ REG_NEGV(r);
+ return r;
+}
+
+/* Hack, to prevent clobbering sources used multiple times when
+ * emulating non-native instructions
+ */
+static inline GLuint keep(GLuint r)
+{
+ REG_SET_NO_USE(r, GL_TRUE);
+ return r;
+}
+
+static inline GLuint absolute(GLuint r)
+{
+ REG_ABS(r);
+ return r;
+}
+
+static int swz_native(struct r300_pfs_compile_state *cs,
+ GLuint src, GLuint * r, GLuint arbneg)
+{
+ COMPILE_STATE;
+
+ /* Native swizzle, handle negation */
+ src = (src & ~REG_NEGS_MASK) | (((arbneg >> 3) & 1) << REG_NEGS_SHIFT);
+
+ if ((arbneg & 0x7) == 0x0) {
+ src = src & ~REG_NEGV_MASK;
+ *r = src;
+ } else if ((arbneg & 0x7) == 0x7) {
+ src |= REG_NEGV_MASK;
+ *r = src;
+ } else {
+ if (!REG_GET_VALID(*r))
+ *r = get_temp_reg(cs);
+ src |= REG_NEGV_MASK;
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r, arbneg & 0x7, keep(src), pfs_one, pfs_zero, 0);
+ src = src & ~REG_NEGV_MASK;
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r,
+ (arbneg ^ 0x7) | WRITEMASK_W,
+ src, pfs_one, pfs_zero, 0);
+ }
+
+ return 3;
+}
+
+static int swz_emit_partial(struct r300_pfs_compile_state *cs,
+ GLuint src,
+ GLuint * r, int mask, int mc, GLuint arbneg)
+{
+ COMPILE_STATE;
+ GLuint tmp;
+ GLuint wmask = 0;
+
+ if (!REG_GET_VALID(*r))
+ *r = get_temp_reg(cs);
+
+ /* A partial match, VSWZ/mask define what parts of the
+ * desired swizzle we match
+ */
+ if (mc + s_mask[mask].count == 3) {
+ wmask = WRITEMASK_W;
+ src |= ((arbneg >> 3) & 1) << REG_NEGS_SHIFT;
+ }
+
+ tmp = arbneg & s_mask[mask].mask;
+ if (tmp) {
+ tmp = tmp ^ s_mask[mask].mask;
+ if (tmp) {
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r,
+ arbneg & s_mask[mask].mask,
+ keep(src) | REG_NEGV_MASK,
+ pfs_one, pfs_zero, 0);
+ if (!wmask) {
+ REG_SET_NO_USE(src, GL_TRUE);
+ } else {
+ REG_SET_NO_USE(src, GL_FALSE);
+ }
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r, tmp | wmask, src, pfs_one, pfs_zero, 0);
+ } else {
+ if (!wmask) {
+ REG_SET_NO_USE(src, GL_TRUE);
+ } else {
+ REG_SET_NO_USE(src, GL_FALSE);
+ }
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r,
+ (arbneg & s_mask[mask].mask) | wmask,
+ src | REG_NEGV_MASK, pfs_one, pfs_zero, 0);
+ }
+ } else {
+ if (!wmask) {
+ REG_SET_NO_USE(src, GL_TRUE);
+ } else {
+ REG_SET_NO_USE(src, GL_FALSE);
+ }
+ emit_arith(cs, PFS_OP_MAD,
+ *r,
+ s_mask[mask].mask | wmask,
+ src, pfs_one, pfs_zero, 0);
+ }
+
+ return s_mask[mask].count;
+}
+
+static GLuint do_swizzle(struct r300_pfs_compile_state *cs,
+ GLuint src, GLuint arbswz, GLuint arbneg)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+ GLuint vswz;
+ int c_mask = 0;
+ int v_match = 0;
+
+ /* If swizzling from something without an XYZW native swizzle,
+ * emit result to a temp, and do new swizzle from the temp.
+ */
+#if 0
+ if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
+ GLuint temp = get_temp_reg(fp);
+ emit_arith(fp,
+ PFS_OP_MAD,
+ temp, WRITEMASK_XYZW, src, pfs_one, pfs_zero, 0);
+ src = temp;
+ }
+#endif
+
+ if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
+ GLuint vsrcswz =
+ (v_swiz[REG_GET_VSWZ(src)].
+ hash & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK)) |
+ REG_GET_SSWZ(src) << 9;
+ GLint i;
+
+ GLuint newswz = 0;
+ GLuint offset;
+ for (i = 0; i < 4; ++i) {
+ offset = GET_SWZ(arbswz, i);
+
+ newswz |=
+ (offset <= 3) ? GET_SWZ(vsrcswz,
+ offset) << i *
+ 3 : offset << i * 3;
+ }
+
+ arbswz = newswz & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK);
+ REG_SET_SSWZ(src, GET_SWZ(newswz, 3));
+ } else {
+ /* set scalar swizzling */
+ REG_SET_SSWZ(src, GET_SWZ(arbswz, 3));
+
+ }
+ do {
+ vswz = REG_GET_VSWZ(src);
+ do {
+ int chash;
+
+ REG_SET_VSWZ(src, vswz);
+ chash = v_swiz[REG_GET_VSWZ(src)].hash &
+ s_mask[c_mask].hash;
+
+ if (chash == (arbswz & s_mask[c_mask].hash)) {
+ if (s_mask[c_mask].count == 3) {
+ v_match += swz_native(cs,
+ src, &r, arbneg);
+ } else {
+ v_match += swz_emit_partial(cs,
+ src,
+ &r,
+ c_mask,
+ v_match,
+ arbneg);
+ }
+
+ if (v_match == 3)
+ return r;
+
+ /* Fill with something invalid.. all 0's was
+ * wrong before, matched SWIZZLE_X. So all
+ * 1's will be okay for now
+ */
+ arbswz |= (PFS_INVAL & s_mask[c_mask].hash);
+ }
+ } while (v_swiz[++vswz].hash != PFS_INVAL);
+ REG_SET_VSWZ(src, SWIZZLE_XYZ);
+ } while (s_mask[++c_mask].hash != PFS_INVAL);
+
+ ERROR("should NEVER get here\n");
+ return r;
+}
+
+static GLuint t_src(struct r300_pfs_compile_state *cs,
+ struct prog_src_register fpsrc)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+
+ switch (fpsrc.File) {
+ case PROGRAM_TEMPORARY:
+ REG_SET_INDEX(r, fpsrc.Index);
+ REG_SET_VALID(r, GL_TRUE);
+ REG_SET_TYPE(r, REG_TYPE_TEMP);
+ break;
+ case PROGRAM_INPUT:
+ REG_SET_INDEX(r, fpsrc.Index);
+ REG_SET_VALID(r, GL_TRUE);
+ REG_SET_TYPE(r, REG_TYPE_INPUT);
+ break;
+ case PROGRAM_LOCAL_PARAM:
+ r = emit_const4fv(cs,
+ fp->mesa_program.Base.LocalParams[fpsrc.
+ Index]);
+ break;
+ case PROGRAM_ENV_PARAM:
+ r = emit_const4fv(cs,
+ cs->compiler->r300->radeon.glCtx->FragmentProgram.Parameters[fpsrc.Index]);
+ break;
+ case PROGRAM_STATE_VAR:
+ case PROGRAM_NAMED_PARAM:
+ case PROGRAM_CONSTANT:
+ r = emit_const4fv(cs,
+ fp->mesa_program.Base.Parameters->
+ ParameterValues[fpsrc.Index]);
+ break;
+ default:
+ ERROR("unknown SrcReg->File %x\n", fpsrc.File);
+ return r;
+ }
+
+ /* no point swizzling ONE/ZERO/HALF constants... */
+ if (REG_GET_VSWZ(r) < SWIZZLE_111 || REG_GET_SSWZ(r) < SWIZZLE_ZERO)
+ r = do_swizzle(cs, r, fpsrc.Swizzle, fpsrc.NegateBase);
+ return r;
+}
+
+static GLuint t_scalar_src(struct r300_pfs_compile_state *cs,
+ struct prog_src_register fpsrc)
+{
+ struct prog_src_register src = fpsrc;
+ int sc = GET_SWZ(fpsrc.Swizzle, 0); /* X */
+
+ src.Swizzle = ((sc << 0) | (sc << 3) | (sc << 6) | (sc << 9));
+
+ return t_src(cs, src);
+}
+
+static GLuint t_dst(struct r300_pfs_compile_state *cs,
+ struct prog_dst_register dest)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+
+ switch (dest.File) {
+ case PROGRAM_TEMPORARY:
+ REG_SET_INDEX(r, dest.Index);
+ REG_SET_VALID(r, GL_TRUE);
+ REG_SET_TYPE(r, REG_TYPE_TEMP);
+ return r;
+ case PROGRAM_OUTPUT:
+ REG_SET_TYPE(r, REG_TYPE_OUTPUT);
+ switch (dest.Index) {
+ case FRAG_RESULT_COLR:
+ case FRAG_RESULT_DEPR:
+ REG_SET_INDEX(r, dest.Index);
+ REG_SET_VALID(r, GL_TRUE);
+ return r;
+ default:
+ ERROR("Bad DstReg->Index 0x%x\n", dest.Index);
+ return r;
+ }
+ default:
+ ERROR("Bad DstReg->File 0x%x\n", dest.File);
+ return r;
+ }
+}
+
+static int t_hw_src(struct r300_pfs_compile_state *cs, GLuint src, GLboolean tex)
+{
+ COMPILE_STATE;
+ int idx;
+ int index = REG_GET_INDEX(src);
+
+ switch (REG_GET_TYPE(src)) {
+ case REG_TYPE_TEMP:
+ /* NOTE: if reg==-1 here, a source is being read that
+ * hasn't been written to. Undefined results.
+ */
+ if (cs->temps[index].reg == -1)
+ cs->temps[index].reg = get_hw_temp(cs, cs->nrslots);
+
+ idx = cs->temps[index].reg;
+
+ if (!REG_GET_NO_USE(src) && (--cs->temps[index].refcount == 0))
+ free_temp(cs, src);
+ break;
+ case REG_TYPE_INPUT:
+ idx = cs->inputs[index].reg;
+
+ if (!REG_GET_NO_USE(src) && (--cs->inputs[index].refcount == 0))
+ free_hw_temp(cs, cs->inputs[index].reg);
+ break;
+ case REG_TYPE_CONST:
+ return (index | SRC_CONST);
+ default:
+ ERROR("Invalid type for source reg\n");
+ return (0 | SRC_CONST);
+ }
+
+ if (!tex)
+ cs->used_in_node |= (1 << idx);
+
+ return idx;
+}
+
+static int t_hw_dst(struct r300_pfs_compile_state *cs,
+ GLuint dest, GLboolean tex, int slot)
+{
+ COMPILE_STATE;
+ int idx;
+ GLuint index = REG_GET_INDEX(dest);
+ assert(REG_GET_VALID(dest));
+
+ switch (REG_GET_TYPE(dest)) {
+ case REG_TYPE_TEMP:
+ if (cs->temps[REG_GET_INDEX(dest)].reg == -1) {
+ if (!tex) {
+ cs->temps[index].reg = get_hw_temp(cs, slot);
+ } else {
+ cs->temps[index].reg = get_hw_temp_tex(cs);
+ }
+ }
+ idx = cs->temps[index].reg;
+
+ if (!REG_GET_NO_USE(dest) && (--cs->temps[index].refcount == 0))
+ free_temp(cs, dest);
+
+ cs->dest_in_node |= (1 << idx);
+ cs->used_in_node |= (1 << idx);
+ break;
+ case REG_TYPE_OUTPUT:
+ switch (index) {
+ case FRAG_RESULT_COLR:
+ code->node[code->cur_node].flags |= R300_RGBA_OUT;
+ break;
+ case FRAG_RESULT_DEPR:
+ fp->WritesDepth = GL_TRUE;
+ code->node[code->cur_node].flags |= R300_W_OUT;
+ break;
+ }
+ return index;
+ break;
+ default:
+ ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
+ return 0;
+ }
+
+ return idx;
+}
+
+static void emit_nop(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+
+ if (cs->nrslots >= PFS_MAX_ALU_INST) {
+ ERROR("Out of ALU instruction slots\n");
+ return;
+ }
+
+ code->alu.inst[cs->nrslots].inst0 = NOP_INST0;
+ code->alu.inst[cs->nrslots].inst1 = NOP_INST1;
+ code->alu.inst[cs->nrslots].inst2 = NOP_INST2;
+ code->alu.inst[cs->nrslots].inst3 = NOP_INST3;
+ cs->nrslots++;
+}
+
+static void emit_tex(struct r300_pfs_compile_state *cs,
+ struct prog_instruction *fpi, int opcode)
+{
+ COMPILE_STATE;
+ GLuint coord = t_src(cs, fpi->SrcReg[0]);
+ GLuint dest = undef, rdest = undef;
+ GLuint din, uin;
+ int unit = fpi->TexSrcUnit;
+ int hwsrc, hwdest;
+ GLuint tempreg = 0;
+
+ /**
+ * Hardware uses [0..1]x[0..1] range for rectangle textures
+ * instead of [0..Width]x[0..Height].
+ * Add a scaling instruction.
+ *
+ * \todo Refactor this once we have proper rewriting/optimization
+ * support for programs.
+ */
+ if (opcode != R300_TEX_OP_KIL && fpi->TexSrcTarget == TEXTURE_RECT_INDEX) {
+ gl_state_index tokens[STATE_LENGTH] = {
+ STATE_INTERNAL, STATE_R300_TEXRECT_FACTOR, 0, 0,
+ 0
+ };
+ int factor_index;
+ GLuint factorreg;
+
+ tokens[2] = unit;
+ factor_index =
+ _mesa_add_state_reference(fp->mesa_program.Base.
+ Parameters, tokens);
+ factorreg =
+ emit_const4fv(cs,
+ fp->mesa_program.Base.Parameters->
+ ParameterValues[factor_index]);
+ tempreg = keep(get_temp_reg(cs));
+
+ emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
+ coord, factorreg, pfs_zero, 0);
+
+ coord = tempreg;
+ }
+
+ /* Texture operations do not support swizzles etc. in hardware,
+ * so emit an additional arithmetic operation if necessary.
+ */
+ if (REG_GET_VSWZ(coord) != SWIZZLE_XYZ ||
+ REG_GET_SSWZ(coord) != SWIZZLE_W ||
+ coord & (REG_NEGV_MASK | REG_NEGS_MASK | REG_ABS_MASK)) {
+ assert(tempreg == 0);
+ tempreg = keep(get_temp_reg(cs));
+ emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
+ coord, pfs_one, pfs_zero, 0);
+ coord = tempreg;
+ }
+
+ /* Ensure correct node indirection */
+ uin = cs->used_in_node;
+ din = cs->dest_in_node;
+
+ /* Resolve source/dest to hardware registers */
+ hwsrc = t_hw_src(cs, coord, GL_TRUE);
+
+ if (opcode != R300_TEX_OP_KIL) {
+ dest = t_dst(cs, fpi->DstReg);
+
+ /* r300 doesn't seem to be able to do TEX->output reg */
+ if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+ rdest = dest;
+ dest = get_temp_reg_tex(cs);
+ } else if (fpi->DstReg.WriteMask != WRITEMASK_XYZW) {
+ /* in case write mask isn't XYZW */
+ rdest = dest;
+ dest = get_temp_reg_tex(cs);
+ }
+ hwdest =
+ t_hw_dst(cs, dest, GL_TRUE,
+ code->node[code->cur_node].alu_offset);
+
+ /* Use a temp that hasn't been used in this node, rather
+ * than causing an indirection
+ */
+ if (uin & (1 << hwdest)) {
+ free_hw_temp(cs, hwdest);
+ hwdest = get_hw_temp_tex(cs);
+ cs->temps[REG_GET_INDEX(dest)].reg = hwdest;
+ }
+ } else {
+ hwdest = 0;
+ unit = 0;
+ }
+
+ /* Indirection if source has been written in this node, or if the
+ * dest has been read/written in this node
+ */
+ if ((REG_GET_TYPE(coord) != REG_TYPE_CONST &&
+ (din & (1 << hwsrc))) || (uin & (1 << hwdest))) {
+
+ /* Finish off current node */
+ if (code->node[code->cur_node].alu_offset == cs->nrslots)
+ emit_nop(cs);
+
+ code->node[code->cur_node].alu_end =
+ cs->nrslots - code->node[code->cur_node].alu_offset - 1;
+ assert(code->node[code->cur_node].alu_end >= 0);
+
+ if (++code->cur_node >= PFS_MAX_TEX_INDIRECT) {
+ ERROR("too many levels of texture indirection\n");
+ return;
+ }
+
+ /* Start new node */
+ code->node[code->cur_node].tex_offset = code->tex.length;
+ code->node[code->cur_node].alu_offset = cs->nrslots;
+ code->node[code->cur_node].tex_end = -1;
+ code->node[code->cur_node].alu_end = -1;
+ code->node[code->cur_node].flags = 0;
+ cs->used_in_node = 0;
+ cs->dest_in_node = 0;
+ }
+
+ if (code->cur_node == 0)
+ code->first_node_has_tex = 1;
+
+ code->tex.inst[code->tex.length++] = 0 | (hwsrc << R300_SRC_ADDR_SHIFT)
+ | (hwdest << R300_DST_ADDR_SHIFT)
+ | (unit << R300_TEX_ID_SHIFT)
+ | (opcode << R300_TEX_INST_SHIFT);
+
+ cs->dest_in_node |= (1 << hwdest);
+ if (REG_GET_TYPE(coord) != REG_TYPE_CONST)
+ cs->used_in_node |= (1 << hwsrc);
+
+ code->node[code->cur_node].tex_end++;
+
+ /* Copy from temp to output if needed */
+ if (REG_GET_VALID(rdest)) {
+ emit_arith(cs, PFS_OP_MAD, rdest, fpi->DstReg.WriteMask, dest,
+ pfs_one, pfs_zero, 0);
+ free_temp(cs, dest);
+ }
+
+ /* Free temp register */
+ if (tempreg != 0)
+ free_temp(cs, tempreg);
+}
+
+/**
+ * Returns the first slot where we could possibly allow writing to dest,
+ * according to register allocation.
+ */
+static int get_earliest_allowed_write(struct r300_pfs_compile_state *cs,
+ GLuint dest, int mask)
+{
+ COMPILE_STATE;
+ int idx;
+ int pos;
+ GLuint index = REG_GET_INDEX(dest);
+ assert(REG_GET_VALID(dest));
+
+ switch (REG_GET_TYPE(dest)) {
+ case REG_TYPE_TEMP:
+ if (cs->temps[index].reg == -1)
+ return 0;
+
+ idx = cs->temps[index].reg;
+ break;
+ case REG_TYPE_OUTPUT:
+ return 0;
+ default:
+ ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
+ return 0;
+ }
+
+ pos = cs->hwtemps[idx].reserved;
+ if (mask & WRITEMASK_XYZ) {
+ if (pos < cs->hwtemps[idx].vector_lastread)
+ pos = cs->hwtemps[idx].vector_lastread;
+ }
+ if (mask & WRITEMASK_W) {
+ if (pos < cs->hwtemps[idx].scalar_lastread)
+ pos = cs->hwtemps[idx].scalar_lastread;
+ }
+
+ return pos;
+}
+
+/**
+ * Allocates a slot for an ALU instruction that can consist of
+ * a vertex part or a scalar part or both.
+ *
+ * Sources from src (src[0] to src[argc-1]) are added to the slot in the
+ * appropriate position (vector and/or scalar), and their positions are
+ * recorded in the srcpos array.
+ *
+ * This function emits instruction code for the source fetch and the
+ * argument selection. It does not emit instruction code for the
+ * opcode or the destination selection.
+ *
+ * @return the index of the slot
+ */
+static int find_and_prepare_slot(struct r300_pfs_compile_state *cs,
+ GLboolean emit_vop,
+ GLboolean emit_sop,
+ int argc, GLuint * src, GLuint dest, int mask)
+{
+ COMPILE_STATE;
+ int hwsrc[3];
+ int srcpos[3];
+ unsigned int used;
+ int tempused;
+ int tempvsrc[3];
+ int tempssrc[3];
+ int pos;
+ int regnr;
+ int i, j;
+
+ // Determine instruction slots, whether sources are required on
+ // vector or scalar side, and the smallest slot number where
+ // all source registers are available
+ used = 0;
+ if (emit_vop)
+ used |= SLOT_OP_VECTOR;
+ if (emit_sop)
+ used |= SLOT_OP_SCALAR;
+
+ pos = get_earliest_allowed_write(cs, dest, mask);
+
+ if (code->node[code->cur_node].alu_offset > pos)
+ pos = code->node[code->cur_node].alu_offset;
+ for (i = 0; i < argc; ++i) {
+ if (!REG_GET_BUILTIN(src[i])) {
+ if (emit_vop)
+ used |= v_swiz[REG_GET_VSWZ(src[i])].flags << i;
+ if (emit_sop)
+ used |= s_swiz[REG_GET_SSWZ(src[i])].flags << i;
+ }
+
+ hwsrc[i] = t_hw_src(cs, src[i], GL_FALSE); /* Note: sideeffects wrt refcounting! */
+ regnr = hwsrc[i] & 31;
+
+ if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
+ if (used & (SLOT_SRC_VECTOR << i)) {
+ if (cs->hwtemps[regnr].vector_valid > pos)
+ pos = cs->hwtemps[regnr].vector_valid;
+ }
+ if (used & (SLOT_SRC_SCALAR << i)) {
+ if (cs->hwtemps[regnr].scalar_valid > pos)
+ pos = cs->hwtemps[regnr].scalar_valid;
+ }
+ }
+ }
+
+ // Find a slot that fits
+ for (;; ++pos) {
+ if (cs->slot[pos].used & used & SLOT_OP_BOTH)
+ continue;
+
+ if (pos >= cs->nrslots) {
+ if (cs->nrslots >= PFS_MAX_ALU_INST) {
+ ERROR("Out of ALU instruction slots\n");
+ return -1;
+ }
+
+ code->alu.inst[pos].inst0 = NOP_INST0;
+ code->alu.inst[pos].inst1 = NOP_INST1;
+ code->alu.inst[pos].inst2 = NOP_INST2;
+ code->alu.inst[pos].inst3 = NOP_INST3;
+
+ cs->nrslots++;
+ }
+ // Note: When we need both parts (vector and scalar) of a source,
+ // we always try to put them into the same position. This makes the
+ // code easier to read, and it is optimal (i.e. one doesn't gain
+ // anything by splitting the parts).
+ // It also avoids headaches with swizzles that access both parts (i.e WXY)
+ tempused = cs->slot[pos].used;
+ for (i = 0; i < 3; ++i) {
+ tempvsrc[i] = cs->slot[pos].vsrc[i];
+ tempssrc[i] = cs->slot[pos].ssrc[i];
+ }
+
+ for (i = 0; i < argc; ++i) {
+ int flags = (used >> i) & SLOT_SRC_BOTH;
+
+ if (!flags) {
+ srcpos[i] = 0;
+ continue;
+ }
+
+ for (j = 0; j < 3; ++j) {
+ if ((tempused >> j) & flags & SLOT_SRC_VECTOR) {
+ if (tempvsrc[j] != hwsrc[i])
+ continue;
+ }
+
+ if ((tempused >> j) & flags & SLOT_SRC_SCALAR) {
+ if (tempssrc[j] != hwsrc[i])
+ continue;
+ }
+
+ break;
+ }
+
+ if (j == 3)
+ break;
+
+ srcpos[i] = j;
+ tempused |= flags << j;
+ if (flags & SLOT_SRC_VECTOR)
+ tempvsrc[j] = hwsrc[i];
+ if (flags & SLOT_SRC_SCALAR)
+ tempssrc[j] = hwsrc[i];
+ }
+
+ if (i == argc)
+ break;
+ }
+
+ // Found a slot, reserve it
+ cs->slot[pos].used = tempused | (used & SLOT_OP_BOTH);
+ for (i = 0; i < 3; ++i) {
+ cs->slot[pos].vsrc[i] = tempvsrc[i];
+ cs->slot[pos].ssrc[i] = tempssrc[i];
+ }
+
+ for (i = 0; i < argc; ++i) {
+ if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
+ int regnr = hwsrc[i] & 31;
+
+ if (used & (SLOT_SRC_VECTOR << i)) {
+ if (cs->hwtemps[regnr].vector_lastread < pos)
+ cs->hwtemps[regnr].vector_lastread =
+ pos;
+ }
+ if (used & (SLOT_SRC_SCALAR << i)) {
+ if (cs->hwtemps[regnr].scalar_lastread < pos)
+ cs->hwtemps[regnr].scalar_lastread =
+ pos;
+ }
+ }
+ }
+
+ // Emit the source fetch code
+ code->alu.inst[pos].inst1 &= ~R300_ALU_SRC_MASK;
+ code->alu.inst[pos].inst1 |=
+ ((cs->slot[pos].vsrc[0] << R300_ALU_SRC0C_SHIFT) |
+ (cs->slot[pos].vsrc[1] << R300_ALU_SRC1C_SHIFT) |
+ (cs->slot[pos].vsrc[2] << R300_ALU_SRC2C_SHIFT));
+
+ code->alu.inst[pos].inst3 &= ~R300_ALU_SRC_MASK;
+ code->alu.inst[pos].inst3 |=
+ ((cs->slot[pos].ssrc[0] << R300_ALU_SRC0A_SHIFT) |
+ (cs->slot[pos].ssrc[1] << R300_ALU_SRC1A_SHIFT) |
+ (cs->slot[pos].ssrc[2] << R300_ALU_SRC2A_SHIFT));
+
+ // Emit the argument selection code
+ if (emit_vop) {
+ int swz[3];
+
+ for (i = 0; i < 3; ++i) {
+ if (i < argc) {
+ swz[i] = (v_swiz[REG_GET_VSWZ(src[i])].base +
+ (srcpos[i] *
+ v_swiz[REG_GET_VSWZ(src[i])].
+ stride)) | ((src[i] & REG_NEGV_MASK)
+ ? ARG_NEG : 0) | ((src[i]
+ &
+ REG_ABS_MASK)
+ ?
+ ARG_ABS
+ : 0);
+ } else {
+ swz[i] = R300_ALU_ARGC_ZERO;
+ }
+ }
+
+ code->alu.inst[pos].inst0 &=
+ ~(R300_ALU_ARG0C_MASK | R300_ALU_ARG1C_MASK |
+ R300_ALU_ARG2C_MASK);
+ code->alu.inst[pos].inst0 |=
+ (swz[0] << R300_ALU_ARG0C_SHIFT) | (swz[1] <<
+ R300_ALU_ARG1C_SHIFT)
+ | (swz[2] << R300_ALU_ARG2C_SHIFT);
+ }
+
+ if (emit_sop) {
+ int swz[3];
+
+ for (i = 0; i < 3; ++i) {
+ if (i < argc) {
+ swz[i] = (s_swiz[REG_GET_SSWZ(src[i])].base +
+ (srcpos[i] *
+ s_swiz[REG_GET_SSWZ(src[i])].
+ stride)) | ((src[i] & REG_NEGV_MASK)
+ ? ARG_NEG : 0) | ((src[i]
+ &
+ REG_ABS_MASK)
+ ?
+ ARG_ABS
+ : 0);
+ } else {
+ swz[i] = R300_ALU_ARGA_ZERO;
+ }
+ }
+
+ code->alu.inst[pos].inst2 &=
+ ~(R300_ALU_ARG0A_MASK | R300_ALU_ARG1A_MASK |
+ R300_ALU_ARG2A_MASK);
+ code->alu.inst[pos].inst2 |=
+ (swz[0] << R300_ALU_ARG0A_SHIFT) | (swz[1] <<
+ R300_ALU_ARG1A_SHIFT)
+ | (swz[2] << R300_ALU_ARG2A_SHIFT);
+ }
+
+ return pos;
+}
+
+/**
+ * Append an ALU instruction to the instruction list.
+ */
+static void emit_arith(struct r300_pfs_compile_state *cs,
+ int op,
+ GLuint dest,
+ int mask,
+ GLuint src0, GLuint src1, GLuint src2, int flags)
+{
+ COMPILE_STATE;
+ GLuint src[3] = { src0, src1, src2 };
+ int hwdest;
+ GLboolean emit_vop, emit_sop;
+ int vop, sop, argc;
+ int pos;
+
+ vop = r300_fpop[op].v_op;
+ sop = r300_fpop[op].s_op;
+ argc = r300_fpop[op].argc;
+
+ if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT &&
+ REG_GET_INDEX(dest) == FRAG_RESULT_DEPR) {
+ if (mask & WRITEMASK_Z) {
+ mask = WRITEMASK_W;
+ } else {
+ return;
+ }
+ }
+
+ emit_vop = GL_FALSE;
+ emit_sop = GL_FALSE;
+ if ((mask & WRITEMASK_XYZ) || vop == R300_ALU_OUTC_DP3)
+ emit_vop = GL_TRUE;
+ if ((mask & WRITEMASK_W) || vop == R300_ALU_OUTC_REPL_ALPHA)
+ emit_sop = GL_TRUE;
+
+ pos =
+ find_and_prepare_slot(cs, emit_vop, emit_sop, argc, src, dest,
+ mask);
+ if (pos < 0)
+ return;
+
+ hwdest = t_hw_dst(cs, dest, GL_FALSE, pos); /* Note: Side effects wrt register allocation */
+
+ if (flags & PFS_FLAG_SAT) {
+ vop |= R300_ALU_OUTC_CLAMP;
+ sop |= R300_ALU_OUTA_CLAMP;
+ }
+
+ /* Throw the pieces together and get ALU/1 */
+ if (emit_vop) {
+ code->alu.inst[pos].inst0 |= vop;
+
+ code->alu.inst[pos].inst1 |= hwdest << R300_ALU_DSTC_SHIFT;
+
+ if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+ if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
+ code->alu.inst[pos].inst1 |=
+ (mask & WRITEMASK_XYZ) <<
+ R300_ALU_DSTC_OUTPUT_MASK_SHIFT;
+ } else
+ assert(0);
+ } else {
+ code->alu.inst[pos].inst1 |=
+ (mask & WRITEMASK_XYZ) <<
+ R300_ALU_DSTC_REG_MASK_SHIFT;
+
+ cs->hwtemps[hwdest].vector_valid = pos + 1;
+ }
+ }
+
+ /* And now ALU/3 */
+ if (emit_sop) {
+ code->alu.inst[pos].inst2 |= sop;
+
+ if (mask & WRITEMASK_W) {
+ if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+ if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
+ code->alu.inst[pos].inst3 |=
+ (hwdest << R300_ALU_DSTA_SHIFT) |
+ R300_ALU_DSTA_OUTPUT;
+ } else if (REG_GET_INDEX(dest) ==
+ FRAG_RESULT_DEPR) {
+ code->alu.inst[pos].inst3 |=
+ R300_ALU_DSTA_DEPTH;
+ } else
+ assert(0);
+ } else {
+ code->alu.inst[pos].inst3 |=
+ (hwdest << R300_ALU_DSTA_SHIFT) |
+ R300_ALU_DSTA_REG;
+
+ cs->hwtemps[hwdest].scalar_valid = pos + 1;
+ }
+ }
+ }
+
+ return;
+}
+
+static GLfloat SinCosConsts[2][4] = {
+ {
+ 1.273239545, // 4/PI
+ -0.405284735, // -4/(PI*PI)
+ 3.141592654, // PI
+ 0.2225 // weight
+ },
+ {
+ 0.75,
+ 0.0,
+ 0.159154943, // 1/(2*PI)
+ 6.283185307 // 2*PI
+ }
+};
+
+/**
+ * Emit a LIT instruction.
+ * \p flags may be PFS_FLAG_SAT
+ *
+ * Definition of LIT (from ARB_fragment_program):
+ * tmp = VectorLoad(op0);
+ * if (tmp.x < 0) tmp.x = 0;
+ * if (tmp.y < 0) tmp.y = 0;
+ * if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
+ * else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
+ * result.x = 1.0;
+ * result.y = tmp.x;
+ * result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0;
+ * result.w = 1.0;
+ *
+ * The longest path of computation is the one leading to result.z,
+ * consisting of 5 operations. This implementation of LIT takes
+ * 5 slots. So unless there's some special undocumented opcode,
+ * this implementation is potentially optimal. Unfortunately,
+ * emit_arith is a bit too conservative because it doesn't understand
+ * partial writes to the vector component.
+ */
+static const GLfloat LitConst[4] =
+ { 127.999999, 127.999999, 127.999999, -127.999999 };
+
+static void emit_lit(struct r300_pfs_compile_state *cs,
+ GLuint dest, int mask, GLuint src, int flags)
+{
+ COMPILE_STATE;
+ GLuint cnst;
+ int needTemporary;
+ GLuint temp;
+
+ cnst = emit_const4fv(cs, LitConst);
+
+ needTemporary = 0;
+ if ((mask & WRITEMASK_XYZW) != WRITEMASK_XYZW) {
+ needTemporary = 1;
+ } else if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+ // LIT is typically followed by DP3/DP4, so there's no point
+ // in creating special code for this case
+ needTemporary = 1;
+ }
+
+ if (needTemporary) {
+ temp = keep(get_temp_reg(cs));
+ } else {
+ temp = keep(dest);
+ }
+
+ // Note: The order of emit_arith inside the slots is relevant,
+ // because emit_arith only looks at scalar vs. vector when resolving
+ // dependencies, and it does not consider individual vector components,
+ // so swizzling between the two parts can create fake dependencies.
+
+ // First slot
+ emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_XY,
+ keep(src), pfs_zero, undef, 0);
+ emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_W, src, cnst, undef, 0);
+
+ // Second slot
+ emit_arith(cs, PFS_OP_MIN, temp, WRITEMASK_Z,
+ swizzle(temp, W, W, W, W), cnst, undef, 0);
+ emit_arith(cs, PFS_OP_LG2, temp, WRITEMASK_W,
+ swizzle(temp, Y, Y, Y, Y), undef, undef, 0);
+
+ // Third slot
+ // If desired, we saturate the y result here.
+ // This does not affect the use as a condition variable in the CMP later
+ emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W,
+ temp, swizzle(temp, Z, Z, Z, Z), pfs_zero, 0);
+ emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_Y,
+ swizzle(temp, X, X, X, X), pfs_one, pfs_zero, flags);
+
+ // Fourth slot
+ emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_X,
+ pfs_one, pfs_one, pfs_zero, 0);
+ emit_arith(cs, PFS_OP_EX2, temp, WRITEMASK_W, temp, undef, undef, 0);
+
+ // Fifth slot
+ emit_arith(cs, PFS_OP_CMP, temp, WRITEMASK_Z,
+ pfs_zero, swizzle(temp, W, W, W, W),
+ negate(swizzle(temp, Y, Y, Y, Y)), flags);
+ emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W, pfs_one, pfs_one,
+ pfs_zero, 0);
+
+ if (needTemporary) {
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ temp, pfs_one, pfs_zero, flags);
+ free_temp(cs, temp);
+ } else {
+ // Decrease refcount of the destination
+ t_hw_dst(cs, dest, GL_FALSE, cs->nrslots);
+ }
+}
+
+static void emit_instruction(struct r300_pfs_compile_state *cs, struct prog_instruction *fpi)
+{
+ COMPILE_STATE;
+ GLuint src[3], dest, temp[2];
+ int flags, mask = 0;
+ int const_sin[2];
+
+ if (fpi->SaturateMode == SATURATE_ZERO_ONE)
+ flags = PFS_FLAG_SAT;
+ else
+ flags = 0;
+
+ if (fpi->Opcode != OPCODE_KIL) {
+ dest = t_dst(cs, fpi->DstReg);
+ mask = fpi->DstReg.WriteMask;
+ }
+
+ switch (fpi->Opcode) {
+ case OPCODE_ABS:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ absolute(src[0]), pfs_one, pfs_zero, flags);
+ break;
+ case OPCODE_ADD:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], pfs_one, src[1], flags);
+ break;
+ case OPCODE_CMP:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ src[2] = t_src(cs, fpi->SrcReg[2]);
+ /* ARB_f_p - if src0.c < 0.0 ? src1.c : src2.c
+ * r300 - if src2.c < 0.0 ? src1.c : src0.c
+ */
+ emit_arith(cs, PFS_OP_CMP, dest, mask,
+ src[2], src[1], src[0], flags);
+ break;
+ case OPCODE_COS:
+ /*
+ * cos using a parabola (see SIN):
+ * cos(x):
+ * x = (x/(2*PI))+0.75
+ * x = frac(x)
+ * x = (x*2*PI)-PI
+ * result = sin(x)
+ */
+ temp[0] = get_temp_reg(cs);
+ const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+ const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+ /* add 0.5*PI and do range reduction */
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+ swizzle(src[0], X, X, X, X),
+ swizzle(const_sin[1], Z, Z, Z, Z),
+ swizzle(const_sin[1], X, X, X, X), 0);
+
+ emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
+ swizzle(temp[0], X, X, X, X),
+ undef, undef, 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W), //2*PI
+ negate(swizzle(const_sin[0], Z, Z, Z, Z)), //-PI
+ 0);
+
+ /* SIN */
+
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+ Z, Z, Z,
+ Z),
+ const_sin[0], pfs_zero, 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+ swizzle(temp[0], Y, Y, Y, Y),
+ absolute(swizzle(temp[0], Z, Z, Z, Z)),
+ swizzle(temp[0], X, X, X, X), 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
+ swizzle(temp[0], X, X, X, X),
+ absolute(swizzle(temp[0], X, X, X, X)),
+ negate(swizzle(temp[0], X, X, X, X)), 0);
+
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ swizzle(temp[0], Y, Y, Y, Y),
+ swizzle(const_sin[0], W, W, W, W),
+ swizzle(temp[0], X, X, X, X), flags);
+
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_DP3:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_DP3, dest, mask,
+ src[0], src[1], undef, flags);
+ break;
+ case OPCODE_DP4:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_DP4, dest, mask,
+ src[0], src[1], undef, flags);
+ break;
+ case OPCODE_DPH:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ /* src0.xyz1 -> temp
+ * DP4 dest, temp, src1
+ */
+ emit_arith(cs, PFS_OP_DP4, dest, mask,
+ swizzle(src[0], X, Y, Z, ONE), src[1],
+ undef, flags);
+ break;
+ case OPCODE_DST:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ /* dest.y = src0.y * src1.y */
+ if (mask & WRITEMASK_Y)
+ emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Y,
+ keep(src[0]), keep(src[1]),
+ pfs_zero, flags);
+ /* dest.z = src0.z */
+ if (mask & WRITEMASK_Z)
+ emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Z,
+ src[0], pfs_one, pfs_zero, flags);
+ /* result.x = 1.0
+ * result.w = src1.w */
+ if (mask & WRITEMASK_XW) {
+ REG_SET_VSWZ(src[1], SWIZZLE_111); /*Cheat */
+ emit_arith(cs, PFS_OP_MAD, dest,
+ mask & WRITEMASK_XW,
+ src[1], pfs_one, pfs_zero, flags);
+ }
+ break;
+ case OPCODE_EX2:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_EX2, dest, mask,
+ src[0], undef, undef, flags);
+ break;
+ case OPCODE_FLR:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ temp[0] = get_temp_reg(cs);
+ /* FRC temp, src0
+ * MAD dest, src0, 1.0, -temp
+ */
+ emit_arith(cs, PFS_OP_FRC, temp[0], mask,
+ keep(src[0]), undef, undef, 0);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], pfs_one, negate(temp[0]), flags);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_FRC:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_FRC, dest, mask,
+ src[0], undef, undef, flags);
+ break;
+ case OPCODE_KIL:
+ emit_tex(cs, fpi, R300_TEX_OP_KIL);
+ break;
+ case OPCODE_LG2:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_LG2, dest, mask,
+ src[0], undef, undef, flags);
+ break;
+ case OPCODE_LIT:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ emit_lit(cs, dest, mask, src[0], flags);
+ break;
+ case OPCODE_LRP:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ src[2] = t_src(cs, fpi->SrcReg[2]);
+ /* result = tmp0tmp1 + (1 - tmp0)tmp2
+ * = tmp0tmp1 + tmp2 + (-tmp0)tmp2
+ * MAD temp, -tmp0, tmp2, tmp2
+ * MAD result, tmp0, tmp1, temp
+ */
+ temp[0] = get_temp_reg(cs);
+ emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+ negate(keep(src[0])), keep(src[2]), src[2],
+ 0);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], src[1], temp[0], flags);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_MAD:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ src[2] = t_src(cs, fpi->SrcReg[2]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], src[1], src[2], flags);
+ break;
+ case OPCODE_MAX:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MAX, dest, mask,
+ src[0], src[1], undef, flags);
+ break;
+ case OPCODE_MIN:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MIN, dest, mask,
+ src[0], src[1], undef, flags);
+ break;
+ case OPCODE_MOV:
+ case OPCODE_SWZ:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], pfs_one, pfs_zero, flags);
+ break;
+ case OPCODE_MUL:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], src[1], pfs_zero, flags);
+ break;
+ case OPCODE_POW:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ src[1] = t_scalar_src(cs, fpi->SrcReg[1]);
+ temp[0] = get_temp_reg(cs);
+ emit_arith(cs, PFS_OP_LG2, temp[0], WRITEMASK_W,
+ src[0], undef, undef, 0);
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
+ temp[0], src[1], pfs_zero, 0);
+ emit_arith(cs, PFS_OP_EX2, dest, fpi->DstReg.WriteMask,
+ temp[0], undef, undef, 0);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_RCP:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_RCP, dest, mask,
+ src[0], undef, undef, flags);
+ break;
+ case OPCODE_RSQ:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_RSQ, dest, mask,
+ absolute(src[0]), pfs_zero, pfs_zero, flags);
+ break;
+ case OPCODE_SCS:
+ /*
+ * scs using a parabola :
+ * scs(x):
+ * result.x = sin(-abs(x)+0.5*PI) (cos)
+ * result.y = sin(x) (sin)
+ *
+ */
+ temp[0] = get_temp_reg(cs);
+ temp[1] = get_temp_reg(cs);
+ const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+ const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+ /* x = -abs(x)+0.5*PI */
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(const_sin[0], Z, Z, Z, Z), //PI
+ pfs_half,
+ negate(abs
+ (swizzle(keep(src[0]), X, X, X, X))),
+ 0);
+
+ /* C*x (sin) */
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
+ swizzle(const_sin[0], Y, Y, Y, Y),
+ swizzle(keep(src[0]), X, X, X, X),
+ pfs_zero, 0);
+
+ /* B*x, C*x (cos) */
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+ Z, Z, Z,
+ Z),
+ const_sin[0], pfs_zero, 0);
+
+ /* B*x (sin) */
+ emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
+ swizzle(const_sin[0], X, X, X, X),
+ keep(src[0]), pfs_zero, 0);
+
+ /* y = B*x + C*x*abs(x) (sin) */
+ emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_Z,
+ absolute(src[0]),
+ swizzle(temp[0], W, W, W, W),
+ swizzle(temp[1], W, W, W, W), 0);
+
+ /* y = B*x + C*x*abs(x) (cos) */
+ emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
+ swizzle(temp[0], Y, Y, Y, Y),
+ absolute(swizzle(temp[0], Z, Z, Z, Z)),
+ swizzle(temp[0], X, X, X, X), 0);
+
+ /* y*abs(y) - y (cos), y*abs(y) - y (sin) */
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_X | WRITEMASK_Y, swizzle(temp[1],
+ W, Z, Y,
+ X),
+ absolute(swizzle(temp[1], W, Z, Y, X)),
+ negate(swizzle(temp[1], W, Z, Y, X)), 0);
+
+ /* dest.xy = mad(temp.xy, P, temp2.wz) */
+ emit_arith(cs, PFS_OP_MAD, dest,
+ mask & (WRITEMASK_X | WRITEMASK_Y), temp[0],
+ swizzle(const_sin[0], W, W, W, W),
+ swizzle(temp[1], W, Z, Y, X), flags);
+
+ free_temp(cs, temp[0]);
+ free_temp(cs, temp[1]);
+ break;
+ case OPCODE_SGE:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ temp[0] = get_temp_reg(cs);
+ /* temp = src0 - src1
+ * dest.c = (temp.c < 0.0) ? 0 : 1
+ */
+ emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+ src[0], pfs_one, negate(src[1]), 0);
+ emit_arith(cs, PFS_OP_CMP, dest, mask,
+ pfs_one, pfs_zero, temp[0], 0);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_SIN:
+ /*
+ * using a parabola:
+ * sin(x) = 4/pi * x + -4/(pi*pi) * x * abs(x)
+ * extra precision is obtained by weighting against
+ * itself squared.
+ */
+
+ temp[0] = get_temp_reg(cs);
+ const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+ const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+ /* do range reduction */
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+ swizzle(keep(src[0]), X, X, X, X),
+ swizzle(const_sin[1], Z, Z, Z, Z),
+ pfs_half, 0);
+
+ emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
+ swizzle(temp[0], X, X, X, X),
+ undef, undef, 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W), //2*PI
+ negate(swizzle(const_sin[0], Z, Z, Z, Z)), //PI
+ 0);
+
+ /* SIN */
+
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+ Z, Z, Z,
+ Z),
+ const_sin[0], pfs_zero, 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+ swizzle(temp[0], Y, Y, Y, Y),
+ absolute(swizzle(temp[0], Z, Z, Z, Z)),
+ swizzle(temp[0], X, X, X, X), 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
+ swizzle(temp[0], X, X, X, X),
+ absolute(swizzle(temp[0], X, X, X, X)),
+ negate(swizzle(temp[0], X, X, X, X)), 0);
+
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ swizzle(temp[0], Y, Y, Y, Y),
+ swizzle(const_sin[0], W, W, W, W),
+ swizzle(temp[0], X, X, X, X), flags);
+
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_SLT:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ temp[0] = get_temp_reg(cs);
+ /* temp = src0 - src1
+ * dest.c = (temp.c < 0.0) ? 1 : 0
+ */
+ emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+ src[0], pfs_one, negate(src[1]), 0);
+ emit_arith(cs, PFS_OP_CMP, dest, mask,
+ pfs_zero, pfs_one, temp[0], 0);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_SUB:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], pfs_one, negate(src[1]), flags);
+ break;
+ case OPCODE_TEX:
+ emit_tex(cs, fpi, R300_TEX_OP_LD);
+ break;
+ case OPCODE_TXB:
+ emit_tex(cs, fpi, R300_TEX_OP_TXB);
+ break;
+ case OPCODE_TXP:
+ emit_tex(cs, fpi, R300_TEX_OP_TXP);
+ break;
+ case OPCODE_XPD:{
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ temp[0] = get_temp_reg(cs);
+ /* temp = src0.zxy * src1.yzx */
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_XYZ, swizzle(keep(src[0]),
+ Z, X, Y, W),
+ swizzle(keep(src[1]), Y, Z, X, W),
+ pfs_zero, 0);
+ /* dest.xyz = src0.yzx * src1.zxy - temp
+ * dest.w = undefined
+ * */
+ emit_arith(cs, PFS_OP_MAD, dest,
+ mask & WRITEMASK_XYZ, swizzle(src[0],
+ Y, Z,
+ X, W),
+ swizzle(src[1], Z, X, Y, W),
+ negate(temp[0]), flags);
+ /* cleanup */
+ free_temp(cs, temp[0]);
+ break;
+ }
+ default:
+ ERROR("unknown fpi->Opcode %d\n", fpi->Opcode);
+ break;
+ }
+}
+
+static GLboolean parse_program(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ int clauseidx;
+
+ for (clauseidx = 0; clauseidx < cs->compiler->compiler.NumClauses; ++clauseidx) {
+ struct radeon_clause* clause = &cs->compiler->compiler.Clauses[clauseidx];
+ int ip;
+
+ for(ip = 0; ip < clause->NumInstructions; ++ip) {
+ emit_instruction(cs, clause->Instructions + ip);
+
+ if (fp->error)
+ return GL_FALSE;
+ }
+ }
+
+ return GL_TRUE;
+}
+
+
+/* - Init structures
+ * - Determine what hwregs each input corresponds to
+ */
+static void init_program(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ struct gl_fragment_program *mp = &fp->mesa_program;
+ GLuint InputsRead = mp->Base.InputsRead;
+ GLuint temps_used = 0; /* for fp->temps[] */
+ int i, j;
+
+ /* New compile, reset tracking data */
+ fp->optimization =
+ driQueryOptioni(&cs->compiler->r300->radeon.optionCache, "fp_optimization");
+ fp->translated = GL_FALSE;
+ fp->error = GL_FALSE;
+ fp->WritesDepth = GL_FALSE;
+ code->tex.length = 0;
+ code->cur_node = 0;
+ code->first_node_has_tex = 0;
+ code->const_nr = 0;
+ code->max_temp_idx = 0;
+ code->node[0].alu_end = -1;
+ code->node[0].tex_end = -1;
+
+ for (i = 0; i < PFS_MAX_ALU_INST; i++) {
+ for (j = 0; j < 3; j++) {
+ cs->slot[i].vsrc[j] = SRC_CONST;
+ cs->slot[i].ssrc[j] = SRC_CONST;
+ }
+ }
+
+ /* Work out what temps the Mesa inputs correspond to, this must match
+ * what setup_rs_unit does, which shouldn't be a problem as rs_unit
+ * configures itself based on the fragprog's InputsRead
+ *
+ * NOTE: this depends on get_hw_temp() allocating registers in order,
+ * starting from register 0.
+ */
+
+ /* Texcoords come first */
+ for (i = 0; i < cs->compiler->r300->radeon.glCtx->Const.MaxTextureUnits; i++) {
+ if (InputsRead & (FRAG_BIT_TEX0 << i)) {
+ cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0;
+ cs->inputs[FRAG_ATTRIB_TEX0 + i].reg =
+ get_hw_temp(cs, 0);
+ }
+ }
+ InputsRead &= ~FRAG_BITS_TEX_ANY;
+
+ /* fragment position treated as a texcoord */
+ if (InputsRead & FRAG_BIT_WPOS) {
+ cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0;
+ cs->inputs[FRAG_ATTRIB_WPOS].reg = get_hw_temp(cs, 0);
+ }
+ InputsRead &= ~FRAG_BIT_WPOS;
+
+ /* Then primary colour */
+ if (InputsRead & FRAG_BIT_COL0) {
+ cs->inputs[FRAG_ATTRIB_COL0].refcount = 0;
+ cs->inputs[FRAG_ATTRIB_COL0].reg = get_hw_temp(cs, 0);
+ }
+ InputsRead &= ~FRAG_BIT_COL0;
+
+ /* Secondary color */
+ if (InputsRead & FRAG_BIT_COL1) {
+ cs->inputs[FRAG_ATTRIB_COL1].refcount = 0;
+ cs->inputs[FRAG_ATTRIB_COL1].reg = get_hw_temp(cs, 0);
+ }
+ InputsRead &= ~FRAG_BIT_COL1;
+
+ /* Anything else */
+ if (InputsRead) {
+ WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead);
+ /* force read from hwreg 0 for now */
+ for (i = 0; i < 32; i++)
+ if (InputsRead & (1 << i))
+ cs->inputs[i].reg = 0;
+ }
+
+ /* Pre-parse the program, grabbing refcounts on input/temp regs.
+ * That way, we can free up the reg when it's no longer needed
+ */
+ for (i = 0; i < cs->compiler->compiler.Clauses[0].NumInstructions; ++i) {
+ struct prog_instruction *fpi = cs->compiler->compiler.Clauses[0].Instructions + i;
+ int idx;
+
+ for (j = 0; j < 3; j++) {
+ idx = fpi->SrcReg[j].Index;
+ switch (fpi->SrcReg[j].File) {
+ case PROGRAM_TEMPORARY:
+ if (!(temps_used & (1 << idx))) {
+ cs->temps[idx].reg = -1;
+ cs->temps[idx].refcount = 1;
+ temps_used |= (1 << idx);
+ } else
+ cs->temps[idx].refcount++;
+ break;
+ case PROGRAM_INPUT:
+ cs->inputs[idx].refcount++;
+ break;
+ default:
+ break;
+ }
+ }
+
+ idx = fpi->DstReg.Index;
+ if (fpi->DstReg.File == PROGRAM_TEMPORARY) {
+ if (!(temps_used & (1 << idx))) {
+ cs->temps[idx].reg = -1;
+ cs->temps[idx].refcount = 1;
+ temps_used |= (1 << idx);
+ } else
+ cs->temps[idx].refcount++;
+ }
+ }
+ cs->temp_in_use = temps_used;
+}
+
+
+/**
+ * Final compilation step: Turn the intermediate radeon_program into
+ * machine-readable instructions.
+ */
+GLboolean r300FragmentProgramEmit(struct r300_fragment_program_compiler *compiler)
+{
+ struct r300_pfs_compile_state cs;
+ struct r300_fragment_program_code *code = compiler->code;
+
+ _mesa_memset(&cs, 0, sizeof(cs));
+ cs.compiler = compiler;
+ init_program(&cs);
+
+ if (!parse_program(&cs))
+ return GL_FALSE;
+
+ /* Finish off */
+ code->node[code->cur_node].alu_end =
+ cs.nrslots - code->node[code->cur_node].alu_offset - 1;
+ if (code->node[code->cur_node].tex_end < 0)
+ code->node[code->cur_node].tex_end = 0;
+ code->alu_offset = 0;
+ code->alu_end = cs.nrslots - 1;
+ code->tex_offset = 0;
+ code->tex_end = code->tex.length ? code->tex.length - 1 : 0;
+ assert(code->node[code->cur_node].alu_end >= 0);
+ assert(code->alu_end >= 0);
+
+ return GL_TRUE;
+}
+
diff --git a/src/mesa/drivers/dri/r300/radeon_program.c b/src/mesa/drivers/dri/r300/radeon_program.c
new file mode 100644
index 0000000000..7b03fa6523
--- /dev/null
+++ b/src/mesa/drivers/dri/r300/radeon_program.c
@@ -0,0 +1,151 @@
+/*
+ * Copyright (C) 2008 Nicolai Haehnle.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#include "radeon_program.h"
+
+
+/**
+ * Initialize a compiler structure with a single mixed clause
+ * containing all instructions from the source program.
+ */
+void radeonCompilerInit(
+ struct radeon_compiler *compiler,
+ GLcontext *ctx,
+ struct gl_program *source)
+{
+ struct radeon_clause* clause;
+
+ _mesa_memset(compiler, 0, sizeof(*compiler));
+ compiler->Source = source;
+ compiler->Ctx = ctx;
+
+ compiler->NumTemporaries = source->NumTemporaries;
+
+ clause = radeonCompilerInsertClause(compiler, 0, CLAUSE_MIXED);
+ clause->NumInstructions = 0;
+ while(source->Instructions[clause->NumInstructions].Opcode != OPCODE_END)
+ clause->NumInstructions++;
+ clause->ReservedInstructions = clause->NumInstructions;
+ clause->Instructions = _mesa_alloc_instructions(clause->NumInstructions);
+ _mesa_copy_instructions(clause->Instructions, source->Instructions, clause->NumInstructions);
+}
+
+
+/**
+ * Free all data that is referenced by the compiler structure.
+ * However, the compiler structure itself is not freed.
+ */
+void radeonCompilerCleanup(struct radeon_compiler *compiler)
+{
+ radeonCompilerEraseClauses(compiler, 0, compiler->NumClauses);
+}
+
+
+/**
+ * Allocate and return a unique temporary register.
+ */
+int radeonCompilerAllocateTemporary(struct radeon_compiler *compiler)
+{
+ if (compiler->NumTemporaries >= 256) {
+ _mesa_problem(compiler->Ctx, "radeonCompiler: Too many temporaries");
+ return 0;
+ }
+
+ return compiler->NumTemporaries++;
+}
+
+
+/**
+ * \p position index of the new clause; later clauses are moved
+ * \p type of the new clause; one of CLAUSE_XXX
+ * \return a pointer to the new clause
+ */
+struct radeon_clause* radeonCompilerInsertClause(
+ struct radeon_compiler *compiler,
+ int position, int type)
+{
+ struct radeon_clause* oldClauses = compiler->Clauses;
+ struct radeon_clause* clause;
+
+ assert(position >= 0 && position <= compiler->NumClauses);
+
+ compiler->Clauses = (struct radeon_clause *)
+ _mesa_malloc((compiler->NumClauses+1) * sizeof(struct radeon_clause));
+ if (oldClauses) {
+ _mesa_memcpy(compiler->Clauses, oldClauses,
+ position*sizeof(struct radeon_clause));
+ _mesa_memcpy(compiler->Clauses+position+1, oldClauses+position,
+ (compiler->NumClauses - position) * sizeof(struct radeon_clause));
+ _mesa_free(oldClauses);
+ }
+ compiler->NumClauses++;
+
+ clause = compiler->Clauses + position;
+ _mesa_memset(clause, 0, sizeof(*clause));
+ clause->Type = type;
+
+ return clause;
+}
+
+
+/**
+ * Remove clauses in the range [start, end)
+ */
+void radeonCompilerEraseClauses(
+ struct radeon_compiler *compiler,
+ int start, int end)
+{
+ struct radeon_clause* oldClauses = compiler->Clauses;
+ int i;
+
+ assert(0 <= start);
+ assert(start <= end);
+ assert(end <= compiler->NumClauses);
+
+ if (end == start)
+ return;
+
+ for(i = start; i < end; ++i) {
+ struct radeon_clause* clause = oldClauses + i;
+ _mesa_free_instructions(clause->Instructions, clause->NumInstructions);
+ }
+
+ if (start > 0 || end < compiler->NumClauses) {
+ compiler->Clauses = (struct radeon_clause*)
+ _mesa_malloc((compiler->NumClauses+start-end) * sizeof(struct radeon_clause));
+ _mesa_memcpy(compiler->Clauses, oldClauses,
+ start * sizeof(struct radeon_clause));
+ _mesa_memcpy(compiler->Clauses + start, oldClauses + end,
+ (compiler->NumClauses - end) * sizeof(struct radeon_clause));
+ compiler->NumClauses -= end - start;
+ } else {
+ compiler->Clauses = 0;
+ compiler->NumClauses = 0;
+ }
+
+ _mesa_free(oldClauses);
+}
diff --git a/src/mesa/drivers/dri/r300/radeon_program.h b/src/mesa/drivers/dri/r300/radeon_program.h
new file mode 100644
index 0000000000..18091ac02a
--- /dev/null
+++ b/src/mesa/drivers/dri/r300/radeon_program.h
@@ -0,0 +1,110 @@
+/*
+ * Copyright (C) 2008 Nicolai Haehnle.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef __RADEON_PROGRAM_H_
+#define __RADEON_PROGRAM_H_
+
+#include "glheader.h"
+#include "macros.h"
+#include "enums.h"
+#include "shader/program.h"
+#include "shader/prog_instruction.h"
+
+
+enum {
+ CLAUSE_MIXED = 0,
+ CLAUSE_ALU,
+ CLAUSE_TEX
+};
+
+/**
+ * A clause is simply a sequence of instructions that are executed
+ * in order.
+ */
+struct radeon_clause {
+ /**
+ * Type of this clause, one of CLAUSE_XXX.
+ */
+ int Type : 2;
+
+ /**
+ * Pointer to an array of instructions.
+ * The array is terminated by an OPCODE_END instruction.
+ */
+ struct prog_instruction *Instructions;
+
+ /**
+ * Number of instructions in this clause.
+ */
+ int NumInstructions;
+
+ /**
+ * Space reserved for instructions in this clause.
+ */
+ int ReservedInstructions;
+};
+
+/**
+ * A compile object, holding the current intermediate state during compilation.
+ */
+struct radeon_compiler {
+ struct gl_program *Source;
+ GLcontext* Ctx;
+
+ /**
+ * Number of clauses in this program.
+ */
+ int NumClauses;
+
+ /**
+ * Pointer to an array of NumClauses clauses.
+ */
+ struct radeon_clause *Clauses;
+
+ /**
+ * Number of registers in the PROGRAM_TEMPORARIES file.
+ */
+ int NumTemporaries;
+};
+
+void radeonCompilerInit(
+ struct radeon_compiler *compiler,
+ GLcontext *ctx,
+ struct gl_program *source);
+void radeonCompilerCleanup(struct radeon_compiler *compiler);
+int radeonCompilerAllocateTemporary(struct radeon_compiler *compiler);
+
+struct radeon_clause *radeonCompilerInsertClause(
+ struct radeon_compiler *compiler,
+ int position,
+ int type);
+void radeonCompilerEraseClauses(
+ struct radeon_compiler *compiler,
+ int start,
+ int end);
+
+#endif