1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
|
/*
* (C) Copyright IBM Corporation 2008
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* AUTHORS, COPYRIGHT HOLDERS, AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file
* Real-time assembly generation interface for Cell B.E. SPEs.
*
* \author Ian Romanick <idr@us.ibm.com>
* \author Brian Paul
*/
#include <stdio.h>
#include "pipe/p_compiler.h"
#include "util/u_memory.h"
#include "rtasm_ppc_spe.h"
#ifdef GALLIUM_CELL
/**
* SPE instruction types
*
* There are 6 primary instruction encodings used on the Cell's SPEs. Each of
* the following unions encodes one type.
*
* \bug
* If, at some point, we start generating SPE code from a little-endian host
* these unions will not work.
*/
/*@{*/
/**
* Encode one output register with two input registers
*/
union spe_inst_RR {
uint32_t bits;
struct {
unsigned op:11;
unsigned rB:7;
unsigned rA:7;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with three input registers
*/
union spe_inst_RRR {
uint32_t bits;
struct {
unsigned op:4;
unsigned rT:7;
unsigned rB:7;
unsigned rA:7;
unsigned rC:7;
} inst;
};
/**
* Encode one output register with one input reg. and a 7-bit signed immed
*/
union spe_inst_RI7 {
uint32_t bits;
struct {
unsigned op:11;
unsigned i7:7;
unsigned rA:7;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with one input reg. and an 8-bit signed immed
*/
union spe_inst_RI8 {
uint32_t bits;
struct {
unsigned op:10;
unsigned i8:8;
unsigned rA:7;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with one input reg. and a 10-bit signed immed
*/
union spe_inst_RI10 {
uint32_t bits;
struct {
unsigned op:8;
unsigned i10:10;
unsigned rA:7;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with a 16-bit signed immediate
*/
union spe_inst_RI16 {
uint32_t bits;
struct {
unsigned op:9;
unsigned i16:16;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with a 18-bit signed immediate
*/
union spe_inst_RI18 {
uint32_t bits;
struct {
unsigned op:7;
unsigned i18:18;
unsigned rT:7;
} inst;
};
/*@}*/
static void
indent(const struct spe_function *p)
{
int i;
for (i = 0; i < p->indent; i++) {
putchar(' ');
}
}
static const char *
rem_prefix(const char *longname)
{
return longname + 4;
}
static const char *
reg_name(int reg)
{
switch (reg) {
case SPE_REG_SP:
return "$sp";
case SPE_REG_RA:
return "$lr";
default:
{
static char buf[10];
sprintf(buf, "$%d", reg);
return buf;
}
}
}
static void emit_RR(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, unsigned rB, const char *name)
{
union spe_inst_RR inst;
inst.inst.op = op;
inst.inst.rB = rB;
inst.inst.rA = rA;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t%s, %s, %s\n",
rem_prefix(name), reg_name(rT), reg_name(rA), reg_name(rB));
}
}
static void emit_RRR(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, unsigned rB, unsigned rC, const char *name)
{
union spe_inst_RRR inst;
inst.inst.op = op;
inst.inst.rT = rT;
inst.inst.rB = rB;
inst.inst.rA = rA;
inst.inst.rC = rC;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t%s, %s, %s, %s\n", rem_prefix(name), reg_name(rT),
reg_name(rA), reg_name(rB), reg_name(rC));
}
}
static void emit_RI7(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, int imm, const char *name)
{
union spe_inst_RI7 inst;
inst.inst.op = op;
inst.inst.i7 = imm;
inst.inst.rA = rA;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t%s, %s, 0x%x\n",
rem_prefix(name), reg_name(rT), reg_name(rA), imm);
}
}
static void emit_RI8(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, int imm, const char *name)
{
union spe_inst_RI8 inst;
inst.inst.op = op;
inst.inst.i8 = imm;
inst.inst.rA = rA;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t%s, %s, 0x%x\n",
rem_prefix(name), reg_name(rT), reg_name(rA), imm);
}
}
static void emit_RI10(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, int imm, const char *name)
{
union spe_inst_RI10 inst;
inst.inst.op = op;
inst.inst.i10 = imm;
inst.inst.rA = rA;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
if (strcmp(name, "spe_lqd") == 0 ||
strcmp(name, "spe_stqd") == 0) {
printf("%s\t%s, %d(%s)\n",
rem_prefix(name), reg_name(rT), imm, reg_name(rA));
}
else {
printf("%s\t%s, %s, 0x%x\n",
rem_prefix(name), reg_name(rT), reg_name(rA), imm);
}
}
}
static void emit_RI16(struct spe_function *p, unsigned op, unsigned rT,
int imm, const char *name)
{
union spe_inst_RI16 inst;
inst.inst.op = op;
inst.inst.i16 = imm;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm);
}
}
static void emit_RI18(struct spe_function *p, unsigned op, unsigned rT,
int imm, const char *name)
{
union spe_inst_RI18 inst;
inst.inst.op = op;
inst.inst.i18 = imm;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm);
}
}
#define EMIT_(_name, _op) \
void _name (struct spe_function *p, unsigned rT) \
{ \
emit_RR(p, _op, rT, 0, 0, __FUNCTION__); \
}
#define EMIT_R(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA) \
{ \
emit_RR(p, _op, rT, rA, 0, __FUNCTION__); \
}
#define EMIT_RR(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, unsigned rB) \
{ \
emit_RR(p, _op, rT, rA, rB, __FUNCTION__); \
}
#define EMIT_RRR(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, unsigned rB, unsigned rC) \
{ \
emit_RRR(p, _op, rT, rA, rB, rC, __FUNCTION__); \
}
#define EMIT_RI7(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \
{ \
emit_RI7(p, _op, rT, rA, imm, __FUNCTION__); \
}
#define EMIT_RI8(_name, _op, bias) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \
{ \
emit_RI8(p, _op, rT, rA, bias - imm, __FUNCTION__); \
}
#define EMIT_RI10(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \
{ \
emit_RI10(p, _op, rT, rA, imm, __FUNCTION__); \
}
#define EMIT_RI16(_name, _op) \
void _name (struct spe_function *p, unsigned rT, int imm) \
{ \
emit_RI16(p, _op, rT, imm, __FUNCTION__); \
}
#define EMIT_RI18(_name, _op) \
void _name (struct spe_function *p, unsigned rT, int imm) \
{ \
emit_RI18(p, _op, rT, imm, __FUNCTION__); \
}
#define EMIT_I16(_name, _op) \
void _name (struct spe_function *p, int imm) \
{ \
emit_RI16(p, _op, 0, imm, __FUNCTION__); \
}
#include "rtasm_ppc_spe.h"
/**
* Initialize an spe_function.
* \param code_size size of instruction buffer to allocate, in bytes.
*/
void spe_init_func(struct spe_function *p, unsigned code_size)
{
register unsigned int i;
p->store = align_malloc(code_size, 16);
p->num_inst = 0;
p->max_inst = code_size / SPE_INST_SIZE;
p->set_count = 0;
memset(p->regs, 0, SPE_NUM_REGS * sizeof(p->regs[0]));
/* Conservatively treat R0 - R2 and R80 - R127 as non-volatile.
*/
p->regs[0] = p->regs[1] = p->regs[2] = 1;
for (i = 80; i <= 127; i++) {
p->regs[i] = 1;
}
p->print = false;
p->indent = 0;
}
void spe_release_func(struct spe_function *p)
{
assert(p->num_inst <= p->max_inst);
if (p->store != NULL) {
align_free(p->store);
}
p->store = NULL;
}
/** Return current code size in bytes. */
unsigned spe_code_size(const struct spe_function *p)
{
return p->num_inst * SPE_INST_SIZE;
}
/**
* Allocate a SPE register.
* \return register index or -1 if none left.
*/
int spe_allocate_available_register(struct spe_function *p)
{
unsigned i;
for (i = 0; i < SPE_NUM_REGS; i++) {
if (p->regs[i] == 0) {
p->regs[i] = 1;
return i;
}
}
return -1;
}
/**
* Mark the given SPE register as "allocated".
*/
int spe_allocate_register(struct spe_function *p, int reg)
{
assert(reg < SPE_NUM_REGS);
assert(p->regs[reg] == 0);
p->regs[reg] = 1;
return reg;
}
/**
* Mark the given SPE register as "unallocated". Note that this should
* only be used on registers allocated in the current register set; an
* assertion will fail if an attempt is made to deallocate a register
* allocated in an earlier register set.
*/
void spe_release_register(struct spe_function *p, int reg)
{
assert(reg < SPE_NUM_REGS);
assert(p->regs[reg] == 1);
p->regs[reg] = 0;
}
/**
* Start a new set of registers. This can be called if
* it will be difficult later to determine exactly what
* registers were actually allocated during a code generation
* sequence, and you really just want to deallocate all of them.
*/
void spe_allocate_register_set(struct spe_function *p)
{
register unsigned int i;
/* Keep track of the set count. If it ever wraps around to 0,
* we're in trouble.
*/
p->set_count++;
assert(p->set_count > 0);
/* Increment the allocation count of all registers currently
* allocated. Then any registers that are allocated in this set
* will be the only ones with a count of 1; they'll all be released
* when the register set is released.
*/
for (i = 0; i < SPE_NUM_REGS; i++) {
if (p->regs[i] > 0) p->regs[i]++;
}
}
void spe_release_register_set(struct spe_function *p)
{
unsigned int i;
/* If the set count drops below zero, we're in trouble. */
assert(p->set_count > 0);
p->set_count--;
/* Drop the allocation level of all registers. Any allocated
* during this register set will drop to 0 and then become
* available.
*/
for (i = 0; i < SPE_NUM_REGS; i++) {
if (p->regs[i] > 0) p->regs[i]--;
}
}
void
spe_print_code(struct spe_function *p, boolean enable)
{
p->print = enable;
}
void
spe_indent(struct spe_function *p, int spaces)
{
p->indent += spaces;
}
extern void
spe_comment(struct spe_function *p, int rel_indent, const char *s)
{
if (p->print) {
p->indent += rel_indent;
indent(p);
p->indent -= rel_indent;
printf("# %s\n", s);
}
}
/**
* For branch instructions:
* \param d if 1, disable interupts if branch is taken
* \param e if 1, enable interupts if branch is taken
* If d and e are both zero, don't change interupt status (right?)
*/
/** Branch Indirect to address in rA */
void spe_bi(struct spe_function *p, unsigned rA, int d, int e)
{
emit_RI7(p, 0x1a8, 0, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Interupt Return */
void spe_iret(struct spe_function *p, unsigned rA, int d, int e)
{
emit_RI7(p, 0x1aa, 0, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect and set link on external data */
void spe_bisled(struct spe_function *p, unsigned rT, unsigned rA, int d,
int e)
{
emit_RI7(p, 0x1ab, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect and set link. Save PC in rT, jump to rA. */
void spe_bisl(struct spe_function *p, unsigned rT, unsigned rA, int d,
int e)
{
emit_RI7(p, 0x1a9, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect if zero word. If rT.word[0]==0, jump to rA. */
void spe_biz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e)
{
emit_RI7(p, 0x128, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect if non-zero word. If rT.word[0]!=0, jump to rA. */
void spe_binz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e)
{
emit_RI7(p, 0x129, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect if zero halfword. If rT.halfword[1]==0, jump to rA. */
void spe_bihz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e)
{
emit_RI7(p, 0x12a, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect if non-zero halfword. If rT.halfword[1]!=0, jump to rA. */
void spe_bihnz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e)
{
emit_RI7(p, 0x12b, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/* Hint-for-branch instructions
*/
#if 0
hbr;
hbra;
hbrr;
#endif
/* Control instructions
*/
#if 0
stop;
EMIT_RR (spe_stopd, 0x140);
EMIT_ (spe_lnop, 0x001);
EMIT_ (spe_nop, 0x201);
sync;
EMIT_ (spe_dsync, 0x003);
EMIT_R (spe_mfspr, 0x00c);
EMIT_R (spe_mtspr, 0x10c);
#endif
/**
** Helper / "macro" instructions.
** Use somewhat verbose names as a reminder that these aren't native
** SPE instructions.
**/
void
spe_load_float(struct spe_function *p, unsigned rT, float x)
{
if (x == 0.0f) {
spe_il(p, rT, 0x0);
}
else if (x == 0.5f) {
spe_ilhu(p, rT, 0x3f00);
}
else if (x == 1.0f) {
spe_ilhu(p, rT, 0x3f80);
}
else if (x == -1.0f) {
spe_ilhu(p, rT, 0xbf80);
}
else {
union {
float f;
unsigned u;
} bits;
bits.f = x;
spe_ilhu(p, rT, bits.u >> 16);
spe_iohl(p, rT, bits.u & 0xffff);
}
}
void
spe_load_int(struct spe_function *p, unsigned rT, int i)
{
if (-32768 <= i && i <= 32767) {
spe_il(p, rT, i);
}
else {
spe_ilhu(p, rT, i >> 16);
if (i & 0xffff)
spe_iohl(p, rT, i & 0xffff);
}
}
void spe_load_uint(struct spe_function *p, unsigned rT, unsigned int ui)
{
/* If the whole value is in the lower 18 bits, use ila, which
* doesn't sign-extend. Otherwise, if the two halfwords of
* the constant are identical, use ilh. Otherwise, if every byte of
* the desired value is 0x00 or 0xff, we can use Form Select Mask for
* Bytes Immediate (fsmbi) to load the value in a single instruction.
* Otherwise, in the general case, we have to use ilhu followed by iohl.
*/
if ((ui & 0xfffc0000) == ui) {
spe_ila(p, rT, ui);
}
else if ((ui >> 16) == (ui & 0xffff)) {
spe_ilh(p, rT, ui & 0xffff);
}
else if (
((ui & 0x000000ff) == 0 || (ui & 0x000000ff) == 0x000000ff) &&
((ui & 0x0000ff00) == 0 || (ui & 0x0000ff00) == 0x0000ff00) &&
((ui & 0x00ff0000) == 0 || (ui & 0x00ff0000) == 0x00ff0000) &&
((ui & 0xff000000) == 0 || (ui & 0xff000000) == 0xff000000)
) {
unsigned int mask = 0;
/* fsmbi duplicates each bit in the given mask eight times,
* using a 16-bit value to initialize a 16-byte quadword.
* Each 4-bit nybble of the mask corresponds to a full word
* of the result; look at the value and figure out the mask
* (replicated for each word in the quadword), and then
* form the "select mask" to get the value.
*/
if ((ui & 0x000000ff) == 0x000000ff) mask |= 0x1111;
if ((ui & 0x0000ff00) == 0x0000ff00) mask |= 0x2222;
if ((ui & 0x00ff0000) == 0x00ff0000) mask |= 0x4444;
if ((ui & 0xff000000) == 0xff000000) mask |= 0x8888;
spe_fsmbi(p, rT, mask);
}
else {
/* The general case: this usually uses two instructions, but
* may use only one if the low-order 16 bits of each word are 0.
*/
spe_ilhu(p, rT, ui >> 16);
if (ui & 0xffff)
spe_iohl(p, rT, ui & 0xffff);
}
}
/* This function is constructed identically to spe_sor_uint() below.
* Changes to one should be made in the other.
*/
void spe_and_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui)
{
/* If we can, emit a single instruction, either And Byte Immediate
* (which uses the same constant across each byte), And Halfword Immediate
* (which sign-extends a 10-bit immediate to 16 bits and uses that
* across each halfword), or And Word Immediate (which sign-extends
* a 10-bit immediate to 32 bits).
*
* Otherwise, we'll need to use a temporary register.
*/
register unsigned int tmp;
/* If the upper 23 bits are all 0s or all 1s, sign extension
* will work and we can use And Word Immediate
*/
tmp = ui & 0xfffffe00;
if (tmp == 0xfffffe00 || tmp == 0) {
spe_andi(p, rT, rA, ui & 0x000003ff);
return;
}
/* If the ui field is symmetric along halfword boundaries and
* the upper 7 bits of each halfword are all 0s or 1s, we
* can use And Halfword Immediate
*/
tmp = ui & 0xfe00fe00;
if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) {
spe_andhi(p, rT, rA, ui & 0x000003ff);
return;
}
/* If the ui field is symmetric in each byte, then we can use
* the And Byte Immediate instruction.
*/
tmp = ui & 0x000000ff;
if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) {
spe_andbi(p, rT, rA, tmp);
return;
}
/* Otherwise, we'll have to use a temporary register. */
unsigned int tmp_reg = spe_allocate_available_register(p);
spe_load_uint(p, tmp_reg, ui);
spe_and(p, rT, rA, tmp_reg);
spe_release_register(p, tmp_reg);
}
/* This function is constructed identically to spe_and_uint() above.
* Changes to one should be made in the other.
*/
void spe_xor_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui)
{
/* If we can, emit a single instruction, either Exclusive Or Byte
* Immediate (which uses the same constant across each byte), Exclusive
* Or Halfword Immediate (which sign-extends a 10-bit immediate to
* 16 bits and uses that across each halfword), or Exclusive Or Word
* Immediate (which sign-extends a 10-bit immediate to 32 bits).
*
* Otherwise, we'll need to use a temporary register.
*/
register unsigned int tmp;
/* If the upper 23 bits are all 0s or all 1s, sign extension
* will work and we can use Exclusive Or Word Immediate
*/
tmp = ui & 0xfffffe00;
if (tmp == 0xfffffe00 || tmp == 0) {
spe_xori(p, rT, rA, ui & 0x000003ff);
return;
}
/* If the ui field is symmetric along halfword boundaries and
* the upper 7 bits of each halfword are all 0s or 1s, we
* can use Exclusive Or Halfword Immediate
*/
tmp = ui & 0xfe00fe00;
if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) {
spe_xorhi(p, rT, rA, ui & 0x000003ff);
return;
}
/* If the ui field is symmetric in each byte, then we can use
* the Exclusive Or Byte Immediate instruction.
*/
tmp = ui & 0x000000ff;
if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) {
spe_xorbi(p, rT, rA, tmp);
return;
}
/* Otherwise, we'll have to use a temporary register. */
unsigned int tmp_reg = spe_allocate_available_register(p);
spe_load_uint(p, tmp_reg, ui);
spe_xor(p, rT, rA, tmp_reg);
spe_release_register(p, tmp_reg);
}
void
spe_compare_equal_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui)
{
/* If the comparison value is 9 bits or less, it fits inside a
* Compare Equal Word Immediate instruction.
*/
if ((ui & 0x000001ff) == ui) {
spe_ceqi(p, rT, rA, ui);
}
/* Otherwise, we're going to have to load a word first. */
else {
unsigned int tmp_reg = spe_allocate_available_register(p);
spe_load_uint(p, tmp_reg, ui);
spe_ceq(p, rT, rA, tmp_reg);
spe_release_register(p, tmp_reg);
}
}
void
spe_compare_greater_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui)
{
/* If the comparison value is 10 bits or less, it fits inside a
* Compare Logical Greater Than Word Immediate instruction.
*/
if ((ui & 0x000003ff) == ui) {
spe_clgti(p, rT, rA, ui);
}
/* Otherwise, we're going to have to load a word first. */
else {
unsigned int tmp_reg = spe_allocate_available_register(p);
spe_load_uint(p, tmp_reg, ui);
spe_clgt(p, rT, rA, tmp_reg);
spe_release_register(p, tmp_reg);
}
}
void
spe_splat(struct spe_function *p, unsigned rT, unsigned rA)
{
/* Duplicate bytes 0, 1, 2, and 3 across the whole register */
spe_ila(p, rT, 0x00010203);
spe_shufb(p, rT, rA, rA, rT);
}
void
spe_complement(struct spe_function *p, unsigned rT, unsigned rA)
{
spe_nor(p, rT, rA, rA);
}
void
spe_move(struct spe_function *p, unsigned rT, unsigned rA)
{
/* Use different instructions depending on the instruction address
* to take advantage of the dual pipelines.
*/
if (p->num_inst & 1)
spe_shlqbyi(p, rT, rA, 0); /* odd pipe */
else
spe_ori(p, rT, rA, 0); /* even pipe */
}
void
spe_zero(struct spe_function *p, unsigned rT)
{
spe_xor(p, rT, rT, rT);
}
void
spe_splat_word(struct spe_function *p, unsigned rT, unsigned rA, int word)
{
assert(word >= 0);
assert(word <= 3);
if (word == 0) {
int tmp1 = rT;
spe_ila(p, tmp1, 66051);
spe_shufb(p, rT, rA, rA, tmp1);
}
else {
/* XXX review this, we may not need the rotqbyi instruction */
int tmp1 = rT;
int tmp2 = spe_allocate_available_register(p);
spe_ila(p, tmp1, 66051);
spe_rotqbyi(p, tmp2, rA, 4 * word);
spe_shufb(p, rT, tmp2, tmp2, tmp1);
spe_release_register(p, tmp2);
}
}
/**
* For each 32-bit float element of rA and rB, choose the smaller of the
* two, compositing them into the rT register.
*
* The Float Compare Greater Than (fcgt) instruction will put 1s into
* compare_reg where rA > rB, and 0s where rA <= rB.
*
* Then the Select Bits (selb) instruction will take bits from rA where
* compare_reg is 0, and from rB where compare_reg is 1; i.e., from rA
* where rA <= rB and from rB where rB > rA, which is exactly the
* "min" operation.
*
* The compare_reg could in many cases be the same as rT, unless
* rT == rA || rt == rB. But since this is common in constructions
* like "x = min(x, a)", we always allocate a new register to be safe.
*/
void
spe_float_min(struct spe_function *p, unsigned rT, unsigned rA, unsigned rB)
{
unsigned int compare_reg = spe_allocate_available_register(p);
spe_fcgt(p, compare_reg, rA, rB);
spe_selb(p, rT, rA, rB, compare_reg);
spe_release_register(p, compare_reg);
}
/**
* For each 32-bit float element of rA and rB, choose the greater of the
* two, compositing them into the rT register.
*
* The logic is similar to that of spe_float_min() above; the only
* difference is that the registers on spe_selb() have been reversed,
* so that the larger of the two is selected instead of the smaller.
*/
void
spe_float_max(struct spe_function *p, unsigned rT, unsigned rA, unsigned rB)
{
unsigned int compare_reg = spe_allocate_available_register(p);
spe_fcgt(p, compare_reg, rA, rB);
spe_selb(p, rT, rB, rA, compare_reg);
spe_release_register(p, compare_reg);
}
#endif /* GALLIUM_CELL */
|