1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
|
/*
* (C) Copyright IBM Corporation 2008
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* AUTHORS, COPYRIGHT HOLDERS, AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file
* Real-time assembly generation interface for Cell B.E. SPEs.
*
* \author Ian Romanick <idr@us.ibm.com>
* \author Brian Paul
*/
#include <stdio.h>
#include "pipe/p_compiler.h"
#include "util/u_memory.h"
#include "rtasm_ppc_spe.h"
#ifdef GALLIUM_CELL
/**
* SPE instruction types
*
* There are 6 primary instruction encodings used on the Cell's SPEs. Each of
* the following unions encodes one type.
*
* \bug
* If, at some point, we start generating SPE code from a little-endian host
* these unions will not work.
*/
/*@{*/
/**
* Encode one output register with two input registers
*/
union spe_inst_RR {
uint32_t bits;
struct {
unsigned op:11;
unsigned rB:7;
unsigned rA:7;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with three input registers
*/
union spe_inst_RRR {
uint32_t bits;
struct {
unsigned op:4;
unsigned rT:7;
unsigned rB:7;
unsigned rA:7;
unsigned rC:7;
} inst;
};
/**
* Encode one output register with one input reg. and a 7-bit signed immed
*/
union spe_inst_RI7 {
uint32_t bits;
struct {
unsigned op:11;
unsigned i7:7;
unsigned rA:7;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with one input reg. and an 8-bit signed immed
*/
union spe_inst_RI8 {
uint32_t bits;
struct {
unsigned op:10;
unsigned i8:8;
unsigned rA:7;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with one input reg. and a 10-bit signed immed
*/
union spe_inst_RI10 {
uint32_t bits;
struct {
unsigned op:8;
unsigned i10:10;
unsigned rA:7;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with a 16-bit signed immediate
*/
union spe_inst_RI16 {
uint32_t bits;
struct {
unsigned op:9;
unsigned i16:16;
unsigned rT:7;
} inst;
};
/**
* Encode one output register with a 18-bit signed immediate
*/
union spe_inst_RI18 {
uint32_t bits;
struct {
unsigned op:7;
unsigned i18:18;
unsigned rT:7;
} inst;
};
/*@}*/
static void
indent(const struct spe_function *p)
{
int i;
for (i = 0; i < p->indent; i++) {
putchar(' ');
}
}
static const char *
rem_prefix(const char *longname)
{
return longname + 4;
}
static void emit_RR(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, unsigned rB, const char *name)
{
union spe_inst_RR inst;
inst.inst.op = op;
inst.inst.rB = rB;
inst.inst.rA = rA;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t$%d, $%d, $%d\n", rem_prefix(name), rT, rA, rB);
}
}
static void emit_RRR(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, unsigned rB, unsigned rC, const char *name)
{
union spe_inst_RRR inst;
inst.inst.op = op;
inst.inst.rT = rT;
inst.inst.rB = rB;
inst.inst.rA = rA;
inst.inst.rC = rC;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t$%d, $%d, $%d, $%d\n", rem_prefix(name), rT, rA, rB, rC);
}
}
static void emit_RI7(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, int imm, const char *name)
{
union spe_inst_RI7 inst;
inst.inst.op = op;
inst.inst.i7 = imm;
inst.inst.rA = rA;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t$%d, $%d, 0x%x\n", rem_prefix(name), rT, rA, imm);
}
}
static void emit_RI8(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, int imm, const char *name)
{
union spe_inst_RI8 inst;
inst.inst.op = op;
inst.inst.i8 = imm;
inst.inst.rA = rA;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t$%d, $%d, 0x%x\n", rem_prefix(name), rT, rA, imm);
}
}
static void emit_RI10(struct spe_function *p, unsigned op, unsigned rT,
unsigned rA, int imm, const char *name)
{
union spe_inst_RI10 inst;
inst.inst.op = op;
inst.inst.i10 = imm;
inst.inst.rA = rA;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
if (strcmp(name, "spe_lqd") == 0 ||
strcmp(name, "spe_stqd") == 0)
printf("%s\t$%d, 0x%x($%d)\n", rem_prefix(name), rT, imm, rA);
else
printf("%s\t$%d, $%d, 0x%x\n", rem_prefix(name), rT, rA, imm);
}
}
static void emit_RI16(struct spe_function *p, unsigned op, unsigned rT,
int imm, const char *name)
{
union spe_inst_RI16 inst;
inst.inst.op = op;
inst.inst.i16 = imm;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t$%d, 0x%x\n", rem_prefix(name), rT, imm);
}
}
static void emit_RI18(struct spe_function *p, unsigned op, unsigned rT,
int imm, const char *name)
{
union spe_inst_RI18 inst;
inst.inst.op = op;
inst.inst.i18 = imm;
inst.inst.rT = rT;
p->store[p->num_inst++] = inst.bits;
assert(p->num_inst <= p->max_inst);
if (p->print) {
indent(p);
printf("%s\t$%d, 0x%x\n", rem_prefix(name), rT, imm);
}
}
#define EMIT_(_name, _op) \
void _name (struct spe_function *p, unsigned rT) \
{ \
emit_RR(p, _op, rT, 0, 0, __FUNCTION__); \
}
#define EMIT_R(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA) \
{ \
emit_RR(p, _op, rT, rA, 0, __FUNCTION__); \
}
#define EMIT_RR(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, unsigned rB) \
{ \
emit_RR(p, _op, rT, rA, rB, __FUNCTION__); \
}
#define EMIT_RRR(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, unsigned rB, unsigned rC) \
{ \
emit_RRR(p, _op, rT, rA, rB, rC, __FUNCTION__); \
}
#define EMIT_RI7(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \
{ \
emit_RI7(p, _op, rT, rA, imm, __FUNCTION__); \
}
#define EMIT_RI8(_name, _op, bias) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \
{ \
emit_RI8(p, _op, rT, rA, bias - imm, __FUNCTION__); \
}
#define EMIT_RI10(_name, _op) \
void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \
{ \
emit_RI10(p, _op, rT, rA, imm, __FUNCTION__); \
}
#define EMIT_RI16(_name, _op) \
void _name (struct spe_function *p, unsigned rT, int imm) \
{ \
emit_RI16(p, _op, rT, imm, __FUNCTION__); \
}
#define EMIT_RI18(_name, _op) \
void _name (struct spe_function *p, unsigned rT, int imm) \
{ \
emit_RI18(p, _op, rT, imm, __FUNCTION__); \
}
#define EMIT_I16(_name, _op) \
void _name (struct spe_function *p, int imm) \
{ \
emit_RI16(p, _op, 0, imm, __FUNCTION__); \
}
#include "rtasm_ppc_spe.h"
/**
* Initialize an spe_function.
* \param code_size size of instruction buffer to allocate, in bytes.
*/
void spe_init_func(struct spe_function *p, unsigned code_size)
{
p->store = align_malloc(code_size, 16);
p->num_inst = 0;
p->max_inst = code_size / SPE_INST_SIZE;
/* Conservatively treat R0 - R2 and R80 - R127 as non-volatile.
*/
p->regs[0] = ~7;
p->regs[1] = (1U << (80 - 64)) - 1;
p->print = false;
p->indent = 0;
}
void spe_release_func(struct spe_function *p)
{
assert(p->num_inst <= p->max_inst);
if (p->store != NULL) {
align_free(p->store);
}
p->store = NULL;
}
/**
* Allocate a SPE register.
* \return register index or -1 if none left.
*/
int spe_allocate_available_register(struct spe_function *p)
{
unsigned i;
for (i = 0; i < SPE_NUM_REGS; i++) {
const uint64_t mask = (1ULL << (i % 64));
const unsigned idx = i / 64;
assert(idx < 2);
if ((p->regs[idx] & mask) != 0) {
p->regs[idx] &= ~mask;
return i;
}
}
return -1;
}
/**
* Mark the given SPE register as "allocated".
*/
int spe_allocate_register(struct spe_function *p, int reg)
{
const unsigned idx = reg / 64;
const unsigned bit = reg % 64;
assert(reg < SPE_NUM_REGS);
assert((p->regs[idx] & (1ULL << bit)) != 0);
p->regs[idx] &= ~(1ULL << bit);
return reg;
}
/**
* Mark the given SPE register as "unallocated".
*/
void spe_release_register(struct spe_function *p, int reg)
{
const unsigned idx = reg / 64;
const unsigned bit = reg % 64;
assert(idx < 2);
assert(reg < SPE_NUM_REGS);
assert((p->regs[idx] & (1ULL << bit)) == 0);
p->regs[idx] |= (1ULL << bit);
}
void
spe_print_code(struct spe_function *p, boolean enable)
{
p->print = enable;
}
void
spe_indent(struct spe_function *p, int spaces)
{
p->indent += spaces;
}
extern void
spe_comment(struct spe_function *p, int rel_indent, const char *s)
{
if (p->print) {
p->indent += rel_indent;
indent(p);
p->indent -= rel_indent;
printf("# %s\n", s);
}
}
/**
* For branch instructions:
* \param d if 1, disable interupts if branch is taken
* \param e if 1, enable interupts if branch is taken
* If d and e are both zero, don't change interupt status (right?)
*/
/** Branch Indirect to address in rA */
void spe_bi(struct spe_function *p, unsigned rA, int d, int e)
{
emit_RI7(p, 0x1a8, 0, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Interupt Return */
void spe_iret(struct spe_function *p, unsigned rA, int d, int e)
{
emit_RI7(p, 0x1aa, 0, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect and set link on external data */
void spe_bisled(struct spe_function *p, unsigned rT, unsigned rA, int d,
int e)
{
emit_RI7(p, 0x1ab, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect and set link. Save PC in rT, jump to rA. */
void spe_bisl(struct spe_function *p, unsigned rT, unsigned rA, int d,
int e)
{
emit_RI7(p, 0x1a9, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect if zero word. If rT.word[0]==0, jump to rA. */
void spe_biz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e)
{
emit_RI7(p, 0x128, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect if non-zero word. If rT.word[0]!=0, jump to rA. */
void spe_binz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e)
{
emit_RI7(p, 0x129, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect if zero halfword. If rT.halfword[1]==0, jump to rA. */
void spe_bihz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e)
{
emit_RI7(p, 0x12a, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/** Branch indirect if non-zero halfword. If rT.halfword[1]!=0, jump to rA. */
void spe_bihnz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e)
{
emit_RI7(p, 0x12b, rT, rA, (d << 5) | (e << 4), __FUNCTION__);
}
/* Hint-for-branch instructions
*/
#if 0
hbr;
hbra;
hbrr;
#endif
/* Control instructions
*/
#if 0
stop;
EMIT_RR (spe_stopd, 0x140);
EMIT_ (spe_lnop, 0x001);
EMIT_ (spe_nop, 0x201);
sync;
EMIT_ (spe_dsync, 0x003);
EMIT_R (spe_mfspr, 0x00c);
EMIT_R (spe_mtspr, 0x10c);
#endif
/**
** Helper / "macro" instructions.
** Use somewhat verbose names as a reminder that these aren't native
** SPE instructions.
**/
void
spe_load_float(struct spe_function *p, unsigned rT, float x)
{
if (x == 0.0f) {
spe_il(p, rT, 0x0);
}
else if (x == 0.5f) {
spe_ilhu(p, rT, 0x3f00);
}
else if (x == 1.0f) {
spe_ilhu(p, rT, 0x3f80);
}
else if (x == -1.0f) {
spe_ilhu(p, rT, 0xbf80);
}
else {
union {
float f;
unsigned u;
} bits;
bits.f = x;
spe_ilhu(p, rT, bits.u >> 16);
spe_iohl(p, rT, bits.u & 0xffff);
}
}
void
spe_load_int(struct spe_function *p, unsigned rT, int i)
{
if (-32768 <= i && i <= 32767) {
spe_il(p, rT, i);
}
else {
spe_ilhu(p, rT, i >> 16);
if (i & 0xffff)
spe_iohl(p, rT, i & 0xffff);
}
}
void
spe_splat(struct spe_function *p, unsigned rT, unsigned rA)
{
spe_ila(p, rT, 66051);
spe_shufb(p, rT, rA, rA, rT);
}
void
spe_complement(struct spe_function *p, unsigned rT)
{
spe_nor(p, rT, rT, rT);
}
void
spe_move(struct spe_function *p, unsigned rT, unsigned rA)
{
spe_ori(p, rT, rA, 0);
}
void
spe_zero(struct spe_function *p, unsigned rT)
{
spe_xor(p, rT, rT, rT);
}
void
spe_splat_word(struct spe_function *p, unsigned rT, unsigned rA, int word)
{
assert(word >= 0);
assert(word <= 3);
if (word == 0) {
int tmp1 = rT;
spe_ila(p, tmp1, 66051);
spe_shufb(p, rT, rA, rA, tmp1);
}
else {
/* XXX review this, we may not need the rotqbyi instruction */
int tmp1 = rT;
int tmp2 = spe_allocate_available_register(p);
spe_ila(p, tmp1, 66051);
spe_rotqbyi(p, tmp2, rA, 4 * word);
spe_shufb(p, rT, tmp2, tmp2, tmp1);
spe_release_register(p, tmp2);
}
}
/* For each 32-bit float element of rA and rB, choose the smaller of the
* two, compositing them into the rT register.
*
* The Float Compare Greater Than (fcgt) instruction will put 1s into
* compare_reg where rA > rB, and 0s where rA <= rB.
*
* Then the Select Bits (selb) instruction will take bits from rA where
* compare_reg is 0, and from rB where compare_reg is 1; i.e., from rA
* where rA <= rB and from rB where rB > rA, which is exactly the
* "min" operation.
*
* The compare_reg could in many cases be the same as rT, unless
* rT == rA || rt == rB. But since this is common in constructions
* like "x = min(x, a)", we always allocate a new register to be safe.
*/
void
spe_float_min(struct spe_function *p, unsigned int rT, unsigned int rA, unsigned int rB)
{
unsigned int compare_reg = spe_allocate_available_register(p);
spe_fcgt(p, compare_reg, rA, rB);
spe_selb(p, rT, rA, rB, compare_reg);
spe_release_register(p, compare_reg);
}
/* For each 32-bit float element of rA and rB, choose the greater of the
* two, compositing them into the rT register.
*
* The logic is similar to that of spe_float_min() above; the only
* difference is that the registers on spe_selb() have been reversed,
* so that the larger of the two is selected instead of the smaller.
*/
void
spe_float_max(struct spe_function *p, unsigned int rT, unsigned int rA, unsigned int rB)
{
unsigned int compare_reg = spe_allocate_available_register(p);
spe_fcgt(p, compare_reg, rA, rB);
spe_selb(p, rT, rB, rA, compare_reg);
spe_release_register(p, compare_reg);
}
#endif /* GALLIUM_CELL */
|