1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
|
/**************************************************************************
*
* Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
* Copyright 2009 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* Generate SPU per-fragment code (actually per-quad code).
* \author Brian Paul
* \author Bob Ellison
*/
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "rtasm/rtasm_ppc_spe.h"
#include "cell_context.h"
#include "cell_gen_fragment.h"
/** Do extra optimizations? */
#define OPTIMIZATIONS 1
/**
* Generate SPE code to perform Z/depth testing.
*
* \param dsa Gallium depth/stencil/alpha state to gen code for
* \param f SPE function to append instruction onto.
* \param mask_reg register containing quad/pixel "alive" mask (in/out)
* \param ifragZ_reg register containing integer fragment Z values (in)
* \param ifbZ_reg register containing integer frame buffer Z values (in/out)
* \param zmask_reg register containing result of Z test/comparison (out)
*
* Returns TRUE if the Z-buffer needs to be updated.
*/
static boolean
gen_depth_test(struct spe_function *f,
const struct pipe_depth_stencil_alpha_state *dsa,
int mask_reg, int ifragZ_reg, int ifbZ_reg, int zmask_reg)
{
/* NOTE: we use clgt below, not cgt, because we want to compare _unsigned_
* quantities. This only makes a difference for 32-bit Z values though.
*/
ASSERT(dsa->depth.enabled);
switch (dsa->depth.func) {
case PIPE_FUNC_EQUAL:
/* zmask = (ifragZ == ref) */
spe_ceq(f, zmask_reg, ifragZ_reg, ifbZ_reg);
/* mask = (mask & zmask) */
spe_and(f, mask_reg, mask_reg, zmask_reg);
break;
case PIPE_FUNC_NOTEQUAL:
/* zmask = (ifragZ == ref) */
spe_ceq(f, zmask_reg, ifragZ_reg, ifbZ_reg);
/* mask = (mask & ~zmask) */
spe_andc(f, mask_reg, mask_reg, zmask_reg);
break;
case PIPE_FUNC_GREATER:
/* zmask = (ifragZ > ref) */
spe_clgt(f, zmask_reg, ifragZ_reg, ifbZ_reg);
/* mask = (mask & zmask) */
spe_and(f, mask_reg, mask_reg, zmask_reg);
break;
case PIPE_FUNC_LESS:
/* zmask = (ref > ifragZ) */
spe_clgt(f, zmask_reg, ifbZ_reg, ifragZ_reg);
/* mask = (mask & zmask) */
spe_and(f, mask_reg, mask_reg, zmask_reg);
break;
case PIPE_FUNC_LEQUAL:
/* zmask = (ifragZ > ref) */
spe_clgt(f, zmask_reg, ifragZ_reg, ifbZ_reg);
/* mask = (mask & ~zmask) */
spe_andc(f, mask_reg, mask_reg, zmask_reg);
break;
case PIPE_FUNC_GEQUAL:
/* zmask = (ref > ifragZ) */
spe_clgt(f, zmask_reg, ifbZ_reg, ifragZ_reg);
/* mask = (mask & ~zmask) */
spe_andc(f, mask_reg, mask_reg, zmask_reg);
break;
case PIPE_FUNC_NEVER:
spe_il(f, mask_reg, 0); /* mask = {0,0,0,0} */
spe_move(f, zmask_reg, mask_reg); /* zmask = mask */
break;
case PIPE_FUNC_ALWAYS:
/* mask unchanged */
spe_il(f, zmask_reg, ~0); /* zmask = {~0,~0,~0,~0} */
break;
default:
ASSERT(0);
break;
}
if (dsa->depth.writemask) {
/*
* If (ztest passed) {
* framebufferZ = fragmentZ;
* }
* OR,
* framebufferZ = (ztest_passed ? fragmentZ : framebufferZ;
*/
spe_selb(f, ifbZ_reg, ifbZ_reg, ifragZ_reg, mask_reg);
return TRUE;
}
return FALSE;
}
/**
* Generate SPE code to perform alpha testing.
*
* \param dsa Gallium depth/stencil/alpha state to gen code for
* \param f SPE function to append instruction onto.
* \param mask_reg register containing quad/pixel "alive" mask (in/out)
* \param fragA_reg register containing four fragment alpha values (in)
*/
static void
gen_alpha_test(const struct pipe_depth_stencil_alpha_state *dsa,
struct spe_function *f, int mask_reg, int fragA_reg)
{
int ref_reg = spe_allocate_available_register(f);
int amask_reg = spe_allocate_available_register(f);
ASSERT(dsa->alpha.enabled);
if ((dsa->alpha.func != PIPE_FUNC_NEVER) &&
(dsa->alpha.func != PIPE_FUNC_ALWAYS)) {
/* load/splat the alpha reference float value */
spe_load_float(f, ref_reg, dsa->alpha.ref_value);
}
/* emit code to do the alpha comparison, updating 'mask' */
switch (dsa->alpha.func) {
case PIPE_FUNC_EQUAL:
/* amask = (fragA == ref) */
spe_fceq(f, amask_reg, fragA_reg, ref_reg);
/* mask = (mask & amask) */
spe_and(f, mask_reg, mask_reg, amask_reg);
break;
case PIPE_FUNC_NOTEQUAL:
/* amask = (fragA == ref) */
spe_fceq(f, amask_reg, fragA_reg, ref_reg);
/* mask = (mask & ~amask) */
spe_andc(f, mask_reg, mask_reg, amask_reg);
break;
case PIPE_FUNC_GREATER:
/* amask = (fragA > ref) */
spe_fcgt(f, amask_reg, fragA_reg, ref_reg);
/* mask = (mask & amask) */
spe_and(f, mask_reg, mask_reg, amask_reg);
break;
case PIPE_FUNC_LESS:
/* amask = (ref > fragA) */
spe_fcgt(f, amask_reg, ref_reg, fragA_reg);
/* mask = (mask & amask) */
spe_and(f, mask_reg, mask_reg, amask_reg);
break;
case PIPE_FUNC_LEQUAL:
/* amask = (fragA > ref) */
spe_fcgt(f, amask_reg, fragA_reg, ref_reg);
/* mask = (mask & ~amask) */
spe_andc(f, mask_reg, mask_reg, amask_reg);
break;
case PIPE_FUNC_GEQUAL:
/* amask = (ref > fragA) */
spe_fcgt(f, amask_reg, ref_reg, fragA_reg);
/* mask = (mask & ~amask) */
spe_andc(f, mask_reg, mask_reg, amask_reg);
break;
case PIPE_FUNC_NEVER:
spe_il(f, mask_reg, 0); /* mask = [0,0,0,0] */
break;
case PIPE_FUNC_ALWAYS:
/* no-op, mask unchanged */
break;
default:
ASSERT(0);
break;
}
#if OPTIMIZATIONS
/* if mask == {0,0,0,0} we're all done, return */
{
/* re-use amask reg here */
int tmp_reg = amask_reg;
/* tmp[0] = (mask[0] | mask[1] | mask[2] | mask[3]) */
spe_orx(f, tmp_reg, mask_reg);
/* if tmp[0] == 0 then return from function call */
spe_biz(f, tmp_reg, SPE_REG_RA, 0, 0);
}
#endif
spe_release_register(f, ref_reg);
spe_release_register(f, amask_reg);
}
/**
* This pair of functions is used inline to allocate and deallocate
* optional constant registers. Once a constant is discovered to be
* needed, we will likely need it again, so we don't want to deallocate
* it and have to allocate and load it again unnecessarily.
*/
static INLINE void
setup_optional_register(struct spe_function *f,
int *r)
{
if (*r < 0)
*r = spe_allocate_available_register(f);
}
static INLINE void
release_optional_register(struct spe_function *f,
int r)
{
if (r >= 0)
spe_release_register(f, r);
}
static INLINE void
setup_const_register(struct spe_function *f,
int *r,
float value)
{
if (*r >= 0)
return;
setup_optional_register(f, r);
spe_load_float(f, *r, value);
}
static INLINE void
release_const_register(struct spe_function *f,
int r)
{
release_optional_register(f, r);
}
/**
* Unpack/convert framebuffer colors from four 32-bit packed colors
* (fbRGBA) to four float RGBA vectors (fbR, fbG, fbB, fbA).
* Each 8-bit color component is expanded into a float in [0.0, 1.0].
*/
static void
unpack_colors(struct spe_function *f,
enum pipe_format color_format,
int fbRGBA_reg,
int fbR_reg, int fbG_reg, int fbB_reg, int fbA_reg)
{
int mask0_reg = spe_allocate_available_register(f);
int mask1_reg = spe_allocate_available_register(f);
int mask2_reg = spe_allocate_available_register(f);
int mask3_reg = spe_allocate_available_register(f);
spe_load_int(f, mask0_reg, 0xff);
spe_load_int(f, mask1_reg, 0xff00);
spe_load_int(f, mask2_reg, 0xff0000);
spe_load_int(f, mask3_reg, 0xff000000);
spe_comment(f, 0, "Unpack framebuffer colors, convert to floats");
switch (color_format) {
case PIPE_FORMAT_A8R8G8B8_UNORM:
/* fbB = fbRGBA & mask */
spe_and(f, fbB_reg, fbRGBA_reg, mask0_reg);
/* fbG = fbRGBA & mask */
spe_and(f, fbG_reg, fbRGBA_reg, mask1_reg);
/* fbR = fbRGBA & mask */
spe_and(f, fbR_reg, fbRGBA_reg, mask2_reg);
/* fbA = fbRGBA & mask */
spe_and(f, fbA_reg, fbRGBA_reg, mask3_reg);
/* fbG = fbG >> 8 */
spe_roti(f, fbG_reg, fbG_reg, -8);
/* fbR = fbR >> 16 */
spe_roti(f, fbR_reg, fbR_reg, -16);
/* fbA = fbA >> 24 */
spe_roti(f, fbA_reg, fbA_reg, -24);
break;
case PIPE_FORMAT_B8G8R8A8_UNORM:
/* fbA = fbRGBA & mask */
spe_and(f, fbA_reg, fbRGBA_reg, mask0_reg);
/* fbR = fbRGBA & mask */
spe_and(f, fbR_reg, fbRGBA_reg, mask1_reg);
/* fbG = fbRGBA & mask */
spe_and(f, fbG_reg, fbRGBA_reg, mask2_reg);
/* fbB = fbRGBA & mask */
spe_and(f, fbB_reg, fbRGBA_reg, mask3_reg);
/* fbR = fbR >> 8 */
spe_roti(f, fbR_reg, fbR_reg, -8);
/* fbG = fbG >> 16 */
spe_roti(f, fbG_reg, fbG_reg, -16);
/* fbB = fbB >> 24 */
spe_roti(f, fbB_reg, fbB_reg, -24);
break;
default:
ASSERT(0);
}
/* convert int[4] in [0,255] to float[4] in [0.0, 1.0] */
spe_cuflt(f, fbR_reg, fbR_reg, 8);
spe_cuflt(f, fbG_reg, fbG_reg, 8);
spe_cuflt(f, fbB_reg, fbB_reg, 8);
spe_cuflt(f, fbA_reg, fbA_reg, 8);
spe_release_register(f, mask0_reg);
spe_release_register(f, mask1_reg);
spe_release_register(f, mask2_reg);
spe_release_register(f, mask3_reg);
}
/**
* Generate SPE code to implement the given blend mode for a quad of pixels.
* \param f SPE function to append instruction onto.
* \param fragR_reg register with fragment red values (float) (in/out)
* \param fragG_reg register with fragment green values (float) (in/out)
* \param fragB_reg register with fragment blue values (float) (in/out)
* \param fragA_reg register with fragment alpha values (float) (in/out)
* \param fbRGBA_reg register with packed framebuffer colors (integer) (in)
*/
static void
gen_blend(const struct pipe_blend_state *blend,
const struct pipe_blend_color *blend_color,
struct spe_function *f,
enum pipe_format color_format,
int fragR_reg, int fragG_reg, int fragB_reg, int fragA_reg,
int fbRGBA_reg)
{
int term1R_reg = spe_allocate_available_register(f);
int term1G_reg = spe_allocate_available_register(f);
int term1B_reg = spe_allocate_available_register(f);
int term1A_reg = spe_allocate_available_register(f);
int term2R_reg = spe_allocate_available_register(f);
int term2G_reg = spe_allocate_available_register(f);
int term2B_reg = spe_allocate_available_register(f);
int term2A_reg = spe_allocate_available_register(f);
int fbR_reg = spe_allocate_available_register(f);
int fbG_reg = spe_allocate_available_register(f);
int fbB_reg = spe_allocate_available_register(f);
int fbA_reg = spe_allocate_available_register(f);
int tmp_reg = spe_allocate_available_register(f);
/* Optional constant registers we might or might not end up using;
* if we do use them, make sure we only allocate them once by
* keeping a flag on each one.
*/
int one_reg = -1;
int constR_reg = -1, constG_reg = -1, constB_reg = -1, constA_reg = -1;
ASSERT(blend->rt[0].blend_enable);
/* packed RGBA -> float colors */
unpack_colors(f, color_format, fbRGBA_reg,
fbR_reg, fbG_reg, fbB_reg, fbA_reg);
/*
* Compute Src RGB terms. We're actually looking for the value
* of (the appropriate RGB factors) * (the incoming source RGB color),
* because in some cases (like PIPE_BLENDFACTOR_ONE and
* PIPE_BLENDFACTOR_ZERO) we can avoid doing unnecessary math.
*/
switch (blend->rt[0].rgb_src_factor) {
case PIPE_BLENDFACTOR_ONE:
/* factors = (1,1,1), so term = (R,G,B) */
spe_move(f, term1R_reg, fragR_reg);
spe_move(f, term1G_reg, fragG_reg);
spe_move(f, term1B_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_ZERO:
/* factors = (0,0,0), so term = (0,0,0) */
spe_load_float(f, term1R_reg, 0.0f);
spe_load_float(f, term1G_reg, 0.0f);
spe_load_float(f, term1B_reg, 0.0f);
break;
case PIPE_BLENDFACTOR_SRC_COLOR:
/* factors = (R,G,B), so term = (R*R, G*G, B*B) */
spe_fm(f, term1R_reg, fragR_reg, fragR_reg);
spe_fm(f, term1G_reg, fragG_reg, fragG_reg);
spe_fm(f, term1B_reg, fragB_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_SRC_ALPHA:
/* factors = (A,A,A), so term = (R*A, G*A, B*A) */
spe_fm(f, term1R_reg, fragR_reg, fragA_reg);
spe_fm(f, term1G_reg, fragG_reg, fragA_reg);
spe_fm(f, term1B_reg, fragB_reg, fragA_reg);
break;
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
/* factors = (1-R,1-G,1-B), so term = (R*(1-R), G*(1-G), B*(1-B))
* or in other words term = (R-R*R, G-G*G, B-B*B)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term1R_reg, fragR_reg, fragR_reg, fragR_reg);
spe_fnms(f, term1G_reg, fragG_reg, fragG_reg, fragG_reg);
spe_fnms(f, term1B_reg, fragB_reg, fragB_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_DST_COLOR:
/* factors = (Rfb,Gfb,Bfb), so term = (R*Rfb, G*Gfb, B*Bfb) */
spe_fm(f, term1R_reg, fragR_reg, fbR_reg);
spe_fm(f, term1G_reg, fragG_reg, fbG_reg);
spe_fm(f, term1B_reg, fragB_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_INV_DST_COLOR:
/* factors = (1-Rfb,1-Gfb,1-Bfb), so term = (R*(1-Rfb),G*(1-Gfb),B*(1-Bfb))
* or term = (R-R*Rfb, G-G*Gfb, B-B*Bfb)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term1R_reg, fragR_reg, fbR_reg, fragR_reg);
spe_fnms(f, term1G_reg, fragG_reg, fbG_reg, fragG_reg);
spe_fnms(f, term1B_reg, fragB_reg, fbB_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
/* factors = (1-A,1-A,1-A), so term = (R*(1-A),G*(1-A),B*(1-A))
* or term = (R-R*A,G-G*A,B-B*A)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term1R_reg, fragR_reg, fragA_reg, fragR_reg);
spe_fnms(f, term1G_reg, fragG_reg, fragA_reg, fragG_reg);
spe_fnms(f, term1B_reg, fragB_reg, fragA_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_DST_ALPHA:
/* factors = (Afb, Afb, Afb), so term = (R*Afb, G*Afb, B*Afb) */
spe_fm(f, term1R_reg, fragR_reg, fbA_reg);
spe_fm(f, term1G_reg, fragG_reg, fbA_reg);
spe_fm(f, term1B_reg, fragB_reg, fbA_reg);
break;
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
/* factors = (1-Afb, 1-Afb, 1-Afb), so term = (R*(1-Afb),G*(1-Afb),B*(1-Afb))
* or term = (R-R*Afb,G-G*Afb,b-B*Afb)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term1R_reg, fragR_reg, fbA_reg, fragR_reg);
spe_fnms(f, term1G_reg, fragG_reg, fbA_reg, fragG_reg);
spe_fnms(f, term1B_reg, fragB_reg, fbA_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_CONST_COLOR:
/* We need the optional constant color registers */
setup_const_register(f, &constR_reg, blend_color->color[0]);
setup_const_register(f, &constG_reg, blend_color->color[1]);
setup_const_register(f, &constB_reg, blend_color->color[2]);
/* now, factor = (Rc,Gc,Bc), so term = (R*Rc,G*Gc,B*Bc) */
spe_fm(f, term1R_reg, fragR_reg, constR_reg);
spe_fm(f, term1G_reg, fragG_reg, constG_reg);
spe_fm(f, term1B_reg, fragB_reg, constB_reg);
break;
case PIPE_BLENDFACTOR_CONST_ALPHA:
/* we'll need the optional constant alpha register */
setup_const_register(f, &constA_reg, blend_color->color[3]);
/* factor = (Ac,Ac,Ac), so term = (R*Ac,G*Ac,B*Ac) */
spe_fm(f, term1R_reg, fragR_reg, constA_reg);
spe_fm(f, term1G_reg, fragG_reg, constA_reg);
spe_fm(f, term1B_reg, fragB_reg, constA_reg);
break;
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
/* We need the optional constant color registers */
setup_const_register(f, &constR_reg, blend_color->color[0]);
setup_const_register(f, &constG_reg, blend_color->color[1]);
setup_const_register(f, &constB_reg, blend_color->color[2]);
/* factor = (1-Rc,1-Gc,1-Bc), so term = (R*(1-Rc),G*(1-Gc),B*(1-Bc))
* or term = (R-R*Rc, G-G*Gc, B-B*Bc)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term1R_reg, fragR_reg, constR_reg, fragR_reg);
spe_fnms(f, term1G_reg, fragG_reg, constG_reg, fragG_reg);
spe_fnms(f, term1B_reg, fragB_reg, constB_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
/* We need the optional constant color registers */
setup_const_register(f, &constR_reg, blend_color->color[0]);
setup_const_register(f, &constG_reg, blend_color->color[1]);
setup_const_register(f, &constB_reg, blend_color->color[2]);
/* factor = (1-Ac,1-Ac,1-Ac), so term = (R*(1-Ac),G*(1-Ac),B*(1-Ac))
* or term = (R-R*Ac,G-G*Ac,B-B*Ac)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term1R_reg, fragR_reg, constA_reg, fragR_reg);
spe_fnms(f, term1G_reg, fragG_reg, constA_reg, fragG_reg);
spe_fnms(f, term1B_reg, fragB_reg, constA_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
/* We'll need the optional {1,1,1,1} register */
setup_const_register(f, &one_reg, 1.0f);
/* factor = (min(A,1-Afb),min(A,1-Afb),min(A,1-Afb)), so
* term = (R*min(A,1-Afb), G*min(A,1-Afb), B*min(A,1-Afb))
* We could expand the term (as a*min(b,c) == min(a*b,a*c)
* as long as a is positive), but then we'd have to do three
* spe_float_min() functions instead of one, so this is simpler.
*/
/* tmp = 1 - Afb */
spe_fs(f, tmp_reg, one_reg, fbA_reg);
/* tmp = min(A,tmp) */
spe_float_min(f, tmp_reg, fragA_reg, tmp_reg);
/* term = R*tmp */
spe_fm(f, term1R_reg, fragR_reg, tmp_reg);
spe_fm(f, term1G_reg, fragG_reg, tmp_reg);
spe_fm(f, term1B_reg, fragB_reg, tmp_reg);
break;
/* These are special D3D cases involving a second color output
* from the fragment shader. I'm not sure we can support them
* yet... XXX
*/
case PIPE_BLENDFACTOR_SRC1_COLOR:
case PIPE_BLENDFACTOR_SRC1_ALPHA:
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
default:
ASSERT(0);
}
/*
* Compute Src Alpha term. Like the above, we're looking for
* the full term A*factor, not just the factor itself, because
* in many cases we can avoid doing unnecessary multiplies.
*/
switch (blend->rt[0].alpha_src_factor) {
case PIPE_BLENDFACTOR_ZERO:
/* factor = 0, so term = 0 */
spe_load_float(f, term1A_reg, 0.0f);
break;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* fall through */
case PIPE_BLENDFACTOR_ONE:
/* factor = 1, so term = A */
spe_move(f, term1A_reg, fragA_reg);
break;
case PIPE_BLENDFACTOR_SRC_COLOR:
/* factor = A, so term = A*A */
spe_fm(f, term1A_reg, fragA_reg, fragA_reg);
break;
case PIPE_BLENDFACTOR_SRC_ALPHA:
spe_fm(f, term1A_reg, fragA_reg, fragA_reg);
break;
case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
/* factor = 1-A, so term = A*(1-A) = A-A*A */
/* fnms(a,b,c,d) computes a = d - b*c */
spe_fnms(f, term1A_reg, fragA_reg, fragA_reg, fragA_reg);
break;
case PIPE_BLENDFACTOR_DST_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_DST_COLOR:
/* factor = Afb, so term = A*Afb */
spe_fm(f, term1A_reg, fragA_reg, fbA_reg);
break;
case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_INV_DST_COLOR:
/* factor = 1-Afb, so term = A*(1-Afb) = A - A*Afb */
/* fnms(a,b,c,d) computes a = d - b*c */
spe_fnms(f, term1A_reg, fragA_reg, fbA_reg, fragA_reg);
break;
case PIPE_BLENDFACTOR_CONST_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_CONST_COLOR:
/* We need the optional constA_reg register */
setup_const_register(f, &constA_reg, blend_color->color[3]);
/* factor = Ac, so term = A*Ac */
spe_fm(f, term1A_reg, fragA_reg, constA_reg);
break;
case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
/* We need the optional constA_reg register */
setup_const_register(f, &constA_reg, blend_color->color[3]);
/* factor = 1-Ac, so term = A*(1-Ac) = A-A*Ac */
/* fnms(a,b,c,d) computes a = d - b*c */
spe_fnms(f, term1A_reg, fragA_reg, constA_reg, fragA_reg);
break;
/* These are special D3D cases involving a second color output
* from the fragment shader. I'm not sure we can support them
* yet... XXX
*/
case PIPE_BLENDFACTOR_SRC1_COLOR:
case PIPE_BLENDFACTOR_SRC1_ALPHA:
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
default:
ASSERT(0);
}
/*
* Compute Dest RGB term. Like the above, we're looking for
* the full term (Rfb,Gfb,Bfb)*(factor), not just the factor itself, because
* in many cases we can avoid doing unnecessary multiplies.
*/
switch (blend->rt[0].rgb_dst_factor) {
case PIPE_BLENDFACTOR_ONE:
/* factors = (1,1,1), so term = (Rfb,Gfb,Bfb) */
spe_move(f, term2R_reg, fbR_reg);
spe_move(f, term2G_reg, fbG_reg);
spe_move(f, term2B_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_ZERO:
/* factor s= (0,0,0), so term = (0,0,0) */
spe_load_float(f, term2R_reg, 0.0f);
spe_load_float(f, term2G_reg, 0.0f);
spe_load_float(f, term2B_reg, 0.0f);
break;
case PIPE_BLENDFACTOR_SRC_COLOR:
/* factors = (R,G,B), so term = (R*Rfb, G*Gfb, B*Bfb) */
spe_fm(f, term2R_reg, fbR_reg, fragR_reg);
spe_fm(f, term2G_reg, fbG_reg, fragG_reg);
spe_fm(f, term2B_reg, fbB_reg, fragB_reg);
break;
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
/* factors = (1-R,1-G,1-B), so term = (Rfb*(1-R), Gfb*(1-G), Bfb*(1-B))
* or in other words term = (Rfb-Rfb*R, Gfb-Gfb*G, Bfb-Bfb*B)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term2R_reg, fragR_reg, fbR_reg, fbR_reg);
spe_fnms(f, term2G_reg, fragG_reg, fbG_reg, fbG_reg);
spe_fnms(f, term2B_reg, fragB_reg, fbB_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_SRC_ALPHA:
/* factors = (A,A,A), so term = (Rfb*A, Gfb*A, Bfb*A) */
spe_fm(f, term2R_reg, fbR_reg, fragA_reg);
spe_fm(f, term2G_reg, fbG_reg, fragA_reg);
spe_fm(f, term2B_reg, fbB_reg, fragA_reg);
break;
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
/* factors = (1-A,1-A,1-A) so term = (Rfb-Rfb*A,Gfb-Gfb*A,Bfb-Bfb*A) */
/* fnms(a,b,c,d) computes a = d - b*c */
spe_fnms(f, term2R_reg, fbR_reg, fragA_reg, fbR_reg);
spe_fnms(f, term2G_reg, fbG_reg, fragA_reg, fbG_reg);
spe_fnms(f, term2B_reg, fbB_reg, fragA_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_DST_COLOR:
/* factors = (Rfb,Gfb,Bfb), so term = (Rfb*Rfb, Gfb*Gfb, Bfb*Bfb) */
spe_fm(f, term2R_reg, fbR_reg, fbR_reg);
spe_fm(f, term2G_reg, fbG_reg, fbG_reg);
spe_fm(f, term2B_reg, fbB_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_INV_DST_COLOR:
/* factors = (1-Rfb,1-Gfb,1-Bfb), so term = (Rfb*(1-Rfb),Gfb*(1-Gfb),Bfb*(1-Bfb))
* or term = (Rfb-Rfb*Rfb, Gfb-Gfb*Gfb, Bfb-Bfb*Bfb)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term2R_reg, fbR_reg, fbR_reg, fbR_reg);
spe_fnms(f, term2G_reg, fbG_reg, fbG_reg, fbG_reg);
spe_fnms(f, term2B_reg, fbB_reg, fbB_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_DST_ALPHA:
/* factors = (Afb, Afb, Afb), so term = (Rfb*Afb, Gfb*Afb, Bfb*Afb) */
spe_fm(f, term2R_reg, fbR_reg, fbA_reg);
spe_fm(f, term2G_reg, fbG_reg, fbA_reg);
spe_fm(f, term2B_reg, fbB_reg, fbA_reg);
break;
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
/* factors = (1-Afb, 1-Afb, 1-Afb), so term = (Rfb*(1-Afb),Gfb*(1-Afb),Bfb*(1-Afb))
* or term = (Rfb-Rfb*Afb,Gfb-Gfb*Afb,Bfb-Bfb*Afb)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term2R_reg, fbR_reg, fbA_reg, fbR_reg);
spe_fnms(f, term2G_reg, fbG_reg, fbA_reg, fbG_reg);
spe_fnms(f, term2B_reg, fbB_reg, fbA_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_CONST_COLOR:
/* We need the optional constant color registers */
setup_const_register(f, &constR_reg, blend_color->color[0]);
setup_const_register(f, &constG_reg, blend_color->color[1]);
setup_const_register(f, &constB_reg, blend_color->color[2]);
/* now, factor = (Rc,Gc,Bc), so term = (Rfb*Rc,Gfb*Gc,Bfb*Bc) */
spe_fm(f, term2R_reg, fbR_reg, constR_reg);
spe_fm(f, term2G_reg, fbG_reg, constG_reg);
spe_fm(f, term2B_reg, fbB_reg, constB_reg);
break;
case PIPE_BLENDFACTOR_CONST_ALPHA:
/* we'll need the optional constant alpha register */
setup_const_register(f, &constA_reg, blend_color->color[3]);
/* factor = (Ac,Ac,Ac), so term = (Rfb*Ac,Gfb*Ac,Bfb*Ac) */
spe_fm(f, term2R_reg, fbR_reg, constA_reg);
spe_fm(f, term2G_reg, fbG_reg, constA_reg);
spe_fm(f, term2B_reg, fbB_reg, constA_reg);
break;
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
/* We need the optional constant color registers */
setup_const_register(f, &constR_reg, blend_color->color[0]);
setup_const_register(f, &constG_reg, blend_color->color[1]);
setup_const_register(f, &constB_reg, blend_color->color[2]);
/* factor = (1-Rc,1-Gc,1-Bc), so term = (Rfb*(1-Rc),Gfb*(1-Gc),Bfb*(1-Bc))
* or term = (Rfb-Rfb*Rc, Gfb-Gfb*Gc, Bfb-Bfb*Bc)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term2R_reg, fbR_reg, constR_reg, fbR_reg);
spe_fnms(f, term2G_reg, fbG_reg, constG_reg, fbG_reg);
spe_fnms(f, term2B_reg, fbB_reg, constB_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
/* We need the optional constant color registers */
setup_const_register(f, &constR_reg, blend_color->color[0]);
setup_const_register(f, &constG_reg, blend_color->color[1]);
setup_const_register(f, &constB_reg, blend_color->color[2]);
/* factor = (1-Ac,1-Ac,1-Ac), so term = (Rfb*(1-Ac),Gfb*(1-Ac),Bfb*(1-Ac))
* or term = (Rfb-Rfb*Ac,Gfb-Gfb*Ac,Bfb-Bfb*Ac)
* fnms(a,b,c,d) computes a = d - b*c
*/
spe_fnms(f, term2R_reg, fbR_reg, constA_reg, fbR_reg);
spe_fnms(f, term2G_reg, fbG_reg, constA_reg, fbG_reg);
spe_fnms(f, term2B_reg, fbB_reg, constA_reg, fbB_reg);
break;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* not supported for dest RGB */
ASSERT(0);
break;
/* These are special D3D cases involving a second color output
* from the fragment shader. I'm not sure we can support them
* yet... XXX
*/
case PIPE_BLENDFACTOR_SRC1_COLOR:
case PIPE_BLENDFACTOR_SRC1_ALPHA:
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
default:
ASSERT(0);
}
/*
* Compute Dest Alpha term. Like the above, we're looking for
* the full term Afb*factor, not just the factor itself, because
* in many cases we can avoid doing unnecessary multiplies.
*/
switch (blend->rt[0].alpha_dst_factor) {
case PIPE_BLENDFACTOR_ONE:
/* factor = 1, so term = Afb */
spe_move(f, term2A_reg, fbA_reg);
break;
case PIPE_BLENDFACTOR_ZERO:
/* factor = 0, so term = 0 */
spe_load_float(f, term2A_reg, 0.0f);
break;
case PIPE_BLENDFACTOR_SRC_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_SRC_COLOR:
/* factor = A, so term = Afb*A */
spe_fm(f, term2A_reg, fbA_reg, fragA_reg);
break;
case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
/* factor = 1-A, so term = Afb*(1-A) = Afb-Afb*A */
/* fnms(a,b,c,d) computes a = d - b*c */
spe_fnms(f, term2A_reg, fbA_reg, fragA_reg, fbA_reg);
break;
case PIPE_BLENDFACTOR_DST_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_DST_COLOR:
/* factor = Afb, so term = Afb*Afb */
spe_fm(f, term2A_reg, fbA_reg, fbA_reg);
break;
case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_INV_DST_COLOR:
/* factor = 1-Afb, so term = Afb*(1-Afb) = Afb - Afb*Afb */
/* fnms(a,b,c,d) computes a = d - b*c */
spe_fnms(f, term2A_reg, fbA_reg, fbA_reg, fbA_reg);
break;
case PIPE_BLENDFACTOR_CONST_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_CONST_COLOR:
/* We need the optional constA_reg register */
setup_const_register(f, &constA_reg, blend_color->color[3]);
/* factor = Ac, so term = Afb*Ac */
spe_fm(f, term2A_reg, fbA_reg, constA_reg);
break;
case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* fall through */
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
/* We need the optional constA_reg register */
setup_const_register(f, &constA_reg, blend_color->color[3]);
/* factor = 1-Ac, so term = Afb*(1-Ac) = Afb-Afb*Ac */
/* fnms(a,b,c,d) computes a = d - b*c */
spe_fnms(f, term2A_reg, fbA_reg, constA_reg, fbA_reg);
break;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* not supported for dest alpha */
ASSERT(0);
break;
/* These are special D3D cases involving a second color output
* from the fragment shader. I'm not sure we can support them
* yet... XXX
*/
case PIPE_BLENDFACTOR_SRC1_COLOR:
case PIPE_BLENDFACTOR_SRC1_ALPHA:
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
default:
ASSERT(0);
}
/*
* Combine Src/Dest RGB terms as per the blend equation.
*/
switch (blend->rt[0].rgb_func) {
case PIPE_BLEND_ADD:
spe_fa(f, fragR_reg, term1R_reg, term2R_reg);
spe_fa(f, fragG_reg, term1G_reg, term2G_reg);
spe_fa(f, fragB_reg, term1B_reg, term2B_reg);
break;
case PIPE_BLEND_SUBTRACT:
spe_fs(f, fragR_reg, term1R_reg, term2R_reg);
spe_fs(f, fragG_reg, term1G_reg, term2G_reg);
spe_fs(f, fragB_reg, term1B_reg, term2B_reg);
break;
case PIPE_BLEND_REVERSE_SUBTRACT:
spe_fs(f, fragR_reg, term2R_reg, term1R_reg);
spe_fs(f, fragG_reg, term2G_reg, term1G_reg);
spe_fs(f, fragB_reg, term2B_reg, term1B_reg);
break;
case PIPE_BLEND_MIN:
spe_float_min(f, fragR_reg, term1R_reg, term2R_reg);
spe_float_min(f, fragG_reg, term1G_reg, term2G_reg);
spe_float_min(f, fragB_reg, term1B_reg, term2B_reg);
break;
case PIPE_BLEND_MAX:
spe_float_max(f, fragR_reg, term1R_reg, term2R_reg);
spe_float_max(f, fragG_reg, term1G_reg, term2G_reg);
spe_float_max(f, fragB_reg, term1B_reg, term2B_reg);
break;
default:
ASSERT(0);
}
/*
* Combine Src/Dest A term
*/
switch (blend->rt[0].alpha_func) {
case PIPE_BLEND_ADD:
spe_fa(f, fragA_reg, term1A_reg, term2A_reg);
break;
case PIPE_BLEND_SUBTRACT:
spe_fs(f, fragA_reg, term1A_reg, term2A_reg);
break;
case PIPE_BLEND_REVERSE_SUBTRACT:
spe_fs(f, fragA_reg, term2A_reg, term1A_reg);
break;
case PIPE_BLEND_MIN:
spe_float_min(f, fragA_reg, term1A_reg, term2A_reg);
break;
case PIPE_BLEND_MAX:
spe_float_max(f, fragA_reg, term1A_reg, term2A_reg);
break;
default:
ASSERT(0);
}
spe_release_register(f, term1R_reg);
spe_release_register(f, term1G_reg);
spe_release_register(f, term1B_reg);
spe_release_register(f, term1A_reg);
spe_release_register(f, term2R_reg);
spe_release_register(f, term2G_reg);
spe_release_register(f, term2B_reg);
spe_release_register(f, term2A_reg);
spe_release_register(f, fbR_reg);
spe_release_register(f, fbG_reg);
spe_release_register(f, fbB_reg);
spe_release_register(f, fbA_reg);
spe_release_register(f, tmp_reg);
/* Free any optional registers that actually got used */
release_const_register(f, one_reg);
release_const_register(f, constR_reg);
release_const_register(f, constG_reg);
release_const_register(f, constB_reg);
release_const_register(f, constA_reg);
}
static void
gen_logicop(const struct pipe_blend_state *blend,
struct spe_function *f,
int fragRGBA_reg, int fbRGBA_reg)
{
/* We've got four 32-bit RGBA packed pixels in each of
* fragRGBA_reg and fbRGBA_reg, not sets of floating-point
* reds, greens, blues, and alphas.
* */
ASSERT(blend->logicop_enable);
switch(blend->logicop_func) {
case PIPE_LOGICOP_CLEAR: /* 0 */
spe_zero(f, fragRGBA_reg);
break;
case PIPE_LOGICOP_NOR: /* ~(s | d) */
spe_nor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_AND_INVERTED: /* ~s & d */
/* andc R, A, B computes R = A & ~B */
spe_andc(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg);
break;
case PIPE_LOGICOP_COPY_INVERTED: /* ~s */
spe_complement(f, fragRGBA_reg, fragRGBA_reg);
break;
case PIPE_LOGICOP_AND_REVERSE: /* s & ~d */
/* andc R, A, B computes R = A & ~B */
spe_andc(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_INVERT: /* ~d */
/* Note that (A nor A) == ~(A|A) == ~A */
spe_nor(f, fragRGBA_reg, fbRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_XOR: /* s ^ d */
spe_xor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_NAND: /* ~(s & d) */
spe_nand(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_AND: /* s & d */
spe_and(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_EQUIV: /* ~(s ^ d) */
spe_xor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
spe_complement(f, fragRGBA_reg, fragRGBA_reg);
break;
case PIPE_LOGICOP_NOOP: /* d */
spe_move(f, fragRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_OR_INVERTED: /* ~s | d */
/* orc R, A, B computes R = A | ~B */
spe_orc(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg);
break;
case PIPE_LOGICOP_COPY: /* s */
break;
case PIPE_LOGICOP_OR_REVERSE: /* s | ~d */
/* orc R, A, B computes R = A | ~B */
spe_orc(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_OR: /* s | d */
spe_or(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
break;
case PIPE_LOGICOP_SET: /* 1 */
spe_load_int(f, fragRGBA_reg, 0xffffffff);
break;
default:
ASSERT(0);
}
}
/**
* Generate code to pack a quad of float colors into four 32-bit integers.
*
* \param f SPE function to append instruction onto.
* \param color_format the dest color packing format
* \param r_reg register containing four red values (in/clobbered)
* \param g_reg register containing four green values (in/clobbered)
* \param b_reg register containing four blue values (in/clobbered)
* \param a_reg register containing four alpha values (in/clobbered)
* \param rgba_reg register to store the packed RGBA colors (out)
*/
static void
gen_pack_colors(struct spe_function *f,
enum pipe_format color_format,
int r_reg, int g_reg, int b_reg, int a_reg,
int rgba_reg)
{
int rg_reg = spe_allocate_available_register(f);
int ba_reg = spe_allocate_available_register(f);
/* Convert float[4] in [0.0,1.0] to int[4] in [0,~0], with clamping */
spe_cfltu(f, r_reg, r_reg, 32);
spe_cfltu(f, g_reg, g_reg, 32);
spe_cfltu(f, b_reg, b_reg, 32);
spe_cfltu(f, a_reg, a_reg, 32);
/* Shift the most significant bytes to the least significant positions.
* I.e.: reg = reg >> 24
*/
spe_rotmi(f, r_reg, r_reg, -24);
spe_rotmi(f, g_reg, g_reg, -24);
spe_rotmi(f, b_reg, b_reg, -24);
spe_rotmi(f, a_reg, a_reg, -24);
/* Shift the color bytes according to the surface format */
if (color_format == PIPE_FORMAT_A8R8G8B8_UNORM) {
spe_roti(f, g_reg, g_reg, 8); /* green <<= 8 */
spe_roti(f, r_reg, r_reg, 16); /* red <<= 16 */
spe_roti(f, a_reg, a_reg, 24); /* alpha <<= 24 */
}
else if (color_format == PIPE_FORMAT_B8G8R8A8_UNORM) {
spe_roti(f, r_reg, r_reg, 8); /* red <<= 8 */
spe_roti(f, g_reg, g_reg, 16); /* green <<= 16 */
spe_roti(f, b_reg, b_reg, 24); /* blue <<= 24 */
}
else {
ASSERT(0);
}
/* Merge red, green, blue, alpha registers to make packed RGBA colors.
* Eg: after shifting according to color_format we might have:
* R = {0x00ff0000, 0x00110000, 0x00220000, 0x00330000}
* G = {0x0000ff00, 0x00004400, 0x00005500, 0x00006600}
* B = {0x000000ff, 0x00000077, 0x00000088, 0x00000099}
* A = {0xff000000, 0xaa000000, 0xbb000000, 0xcc000000}
* OR-ing all those together gives us four packed colors:
* RGBA = {0xffffffff, 0xaa114477, 0xbb225588, 0xcc336699}
*/
spe_or(f, rg_reg, r_reg, g_reg);
spe_or(f, ba_reg, a_reg, b_reg);
spe_or(f, rgba_reg, rg_reg, ba_reg);
spe_release_register(f, rg_reg);
spe_release_register(f, ba_reg);
}
static void
gen_colormask(struct spe_function *f,
uint colormask,
enum pipe_format color_format,
int fragRGBA_reg, int fbRGBA_reg)
{
/* We've got four 32-bit RGBA packed pixels in each of
* fragRGBA_reg and fbRGBA_reg, not sets of floating-point
* reds, greens, blues, and alphas. Further, the pixels
* are packed according to the given color format, not
* necessarily RGBA...
*/
uint r_mask;
uint g_mask;
uint b_mask;
uint a_mask;
/* Calculate exactly where the bits for any particular color
* end up, so we can mask them correctly.
*/
switch(color_format) {
case PIPE_FORMAT_A8R8G8B8_UNORM:
/* ARGB */
a_mask = 0xff000000;
r_mask = 0x00ff0000;
g_mask = 0x0000ff00;
b_mask = 0x000000ff;
break;
case PIPE_FORMAT_B8G8R8A8_UNORM:
/* BGRA */
b_mask = 0xff000000;
g_mask = 0x00ff0000;
r_mask = 0x0000ff00;
a_mask = 0x000000ff;
break;
default:
ASSERT(0);
}
/* For each R, G, B, and A component we're supposed to mask out,
* clear its bits. Then our mask operation later will work
* as expected.
*/
if (!(colormask & PIPE_MASK_R)) {
r_mask = 0;
}
if (!(colormask & PIPE_MASK_G)) {
g_mask = 0;
}
if (!(colormask & PIPE_MASK_B)) {
b_mask = 0;
}
if (!(colormask & PIPE_MASK_A)) {
a_mask = 0;
}
/* Get a temporary register to hold the mask that will be applied
* to the fragment
*/
int colormask_reg = spe_allocate_available_register(f);
/* The actual mask we're going to use is an OR of the remaining R, G, B,
* and A masks. Load the result value into our temporary register.
*/
spe_load_uint(f, colormask_reg, r_mask | g_mask | b_mask | a_mask);
/* Use the mask register to select between the fragment color
* values and the frame buffer color values. Wherever the
* mask has a 0 bit, the current frame buffer color should override
* the fragment color. Wherever the mask has a 1 bit, the
* fragment color should persevere. The Select Bits (selb rt, rA, rB, rM)
* instruction will select bits from its first operand rA wherever the
* the mask bits rM are 0, and from its second operand rB wherever the
* mask bits rM are 1. That means that the frame buffer color is the
* first operand, and the fragment color the second.
*/
spe_selb(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg, colormask_reg);
/* Release the temporary register and we're done */
spe_release_register(f, colormask_reg);
}
/**
* This function is annoyingly similar to gen_depth_test(), above, except
* that instead of comparing two varying values (i.e. fragment and buffer),
* we're comparing a varying value with a static value. As such, we have
* access to the Compare Immediate instructions where we don't in
* gen_depth_test(), which is what makes us very different.
*
* There's some added complexity if there's a non-trivial state->mask
* value; then stencil and reference both must be masked
*
* The return value in the stencil_pass_reg is a bitmask of valid
* fragments that also passed the stencil test. The bitmask of valid
* fragments that failed would be found in
* (fragment_mask_reg & ~stencil_pass_reg).
*/
static void
gen_stencil_test(struct spe_function *f,
const struct pipe_stencil_state *state,
uint stencil_max_value,
int fragment_mask_reg,
int fbS_reg,
int stencil_pass_reg)
{
/* Generate code that puts the set of passing fragments into the
* stencil_pass_reg register, taking into account whether each fragment
* was active to begin with.
*/
switch (state->func) {
case PIPE_FUNC_EQUAL:
if (state->valuemask == stencil_max_value) {
/* stencil_pass = fragment_mask & (s == reference) */
spe_compare_equal_uint(f, stencil_pass_reg, fbS_reg, state->ref_value);
spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
}
else {
/* stencil_pass = fragment_mask & ((s&mask) == (reference&mask)) */
uint tmp_masked_stencil = spe_allocate_available_register(f);
spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
spe_compare_equal_uint(f, stencil_pass_reg, tmp_masked_stencil,
state->valuemask & state->ref_value);
spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
spe_release_register(f, tmp_masked_stencil);
}
break;
case PIPE_FUNC_NOTEQUAL:
if (state->valuemask == stencil_max_value) {
/* stencil_pass = fragment_mask & ~(s == reference) */
spe_compare_equal_uint(f, stencil_pass_reg, fbS_reg, state->ref_value);
spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
}
else {
/* stencil_pass = fragment_mask & ~((s&mask) == (reference&mask)) */
int tmp_masked_stencil = spe_allocate_available_register(f);
spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
spe_compare_equal_uint(f, stencil_pass_reg, tmp_masked_stencil,
state->valuemask & state->ref_value);
spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
spe_release_register(f, tmp_masked_stencil);
}
break;
case PIPE_FUNC_LESS:
if (state->valuemask == stencil_max_value) {
/* stencil_pass = fragment_mask & (reference < s) */
spe_compare_greater_uint(f, stencil_pass_reg, fbS_reg, state->ref_value);
spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
}
else {
/* stencil_pass = fragment_mask & ((reference&mask) < (s & mask)) */
int tmp_masked_stencil = spe_allocate_available_register(f);
spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
spe_compare_greater_uint(f, stencil_pass_reg, tmp_masked_stencil,
state->valuemask & state->ref_value);
spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
spe_release_register(f, tmp_masked_stencil);
}
break;
case PIPE_FUNC_GREATER:
if (state->valuemask == stencil_max_value) {
/* stencil_pass = fragment_mask & (reference > s) */
/* There's no convenient Compare Less Than Immediate instruction, so
* we'll have to do this one the harder way, by loading a register and
* comparing directly. Compare Logical Greater Than Word (clgt)
* treats its operands as unsigned - no sign extension.
*/
int tmp_reg = spe_allocate_available_register(f);
spe_load_uint(f, tmp_reg, state->ref_value);
spe_clgt(f, stencil_pass_reg, tmp_reg, fbS_reg);
spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
spe_release_register(f, tmp_reg);
}
else {
/* stencil_pass = fragment_mask & ((reference&mask) > (s&mask)) */
int tmp_reg = spe_allocate_available_register(f);
int tmp_masked_stencil = spe_allocate_available_register(f);
spe_load_uint(f, tmp_reg, state->valuemask & state->ref_value);
spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
spe_clgt(f, stencil_pass_reg, tmp_reg, tmp_masked_stencil);
spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
spe_release_register(f, tmp_reg);
spe_release_register(f, tmp_masked_stencil);
}
break;
case PIPE_FUNC_GEQUAL:
if (state->valuemask == stencil_max_value) {
/* stencil_pass = fragment_mask & (reference >= s)
* = fragment_mask & ~(s > reference) */
spe_compare_greater_uint(f, stencil_pass_reg, fbS_reg,
state->ref_value);
spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
}
else {
/* stencil_pass = fragment_mask & ~((s&mask) > (reference&mask)) */
int tmp_masked_stencil = spe_allocate_available_register(f);
spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
spe_compare_greater_uint(f, stencil_pass_reg, tmp_masked_stencil,
state->valuemask & state->ref_value);
spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
spe_release_register(f, tmp_masked_stencil);
}
break;
case PIPE_FUNC_LEQUAL:
if (state->valuemask == stencil_max_value) {
/* stencil_pass = fragment_mask & (reference <= s) ]
* = fragment_mask & ~(reference > s) */
/* As above, we have to do this by loading a register */
int tmp_reg = spe_allocate_available_register(f);
spe_load_uint(f, tmp_reg, state->ref_value);
spe_clgt(f, stencil_pass_reg, tmp_reg, fbS_reg);
spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
spe_release_register(f, tmp_reg);
}
else {
/* stencil_pass = fragment_mask & ~((reference&mask) > (s&mask)) */
int tmp_reg = spe_allocate_available_register(f);
int tmp_masked_stencil = spe_allocate_available_register(f);
spe_load_uint(f, tmp_reg, state->ref_value & state->valuemask);
spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
spe_clgt(f, stencil_pass_reg, tmp_reg, tmp_masked_stencil);
spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
spe_release_register(f, tmp_reg);
spe_release_register(f, tmp_masked_stencil);
}
break;
case PIPE_FUNC_NEVER:
/* stencil_pass = fragment_mask & 0 = 0 */
spe_load_uint(f, stencil_pass_reg, 0);
break;
case PIPE_FUNC_ALWAYS:
/* stencil_pass = fragment_mask & 1 = fragment_mask */
spe_move(f, stencil_pass_reg, fragment_mask_reg);
break;
}
/* The fragments that passed the stencil test are now in stencil_pass_reg.
* The fragments that failed would be (fragment_mask_reg & ~stencil_pass_reg).
*/
}
/**
* This function generates code that calculates a set of new stencil values
* given the earlier values and the operation to apply. It does not
* apply any tests. It is intended to be called up to 3 times
* (for the stencil fail operation, for the stencil pass-z fail operation,
* and for the stencil pass-z pass operation) to collect up to three
* possible sets of values, and for the caller to combine them based
* on the result of the tests.
*
* stencil_max_value should be (2^n - 1) where n is the number of bits
* in the stencil buffer - in other words, it should be usable as a mask.
*/
static void
gen_stencil_values(struct spe_function *f,
uint stencil_op,
uint stencil_ref_value,
uint stencil_max_value,
int fbS_reg,
int newS_reg)
{
/* The code below assumes that newS_reg and fbS_reg are not the same
* register; if they can be, the calculations below will have to use
* an additional temporary register. For now, mark the assumption
* with an assertion that will fail if they are the same.
*/
ASSERT(fbS_reg != newS_reg);
/* The code also assumes the the stencil_max_value is of the form
* 2^n-1 and can therefore be used as a mask for the valid bits in
* addition to a maximum. Make sure this is the case as well.
* The clever math below exploits the fact that incrementing a
* binary number serves to flip all the bits of a number starting at
* the LSB and continuing to (and including) the first zero bit
* found. That means that a number and its increment will always
* have at least one bit in common (the high order bit, if nothing
* else) *unless* the number is zero, *or* the number is of a form
* consisting of some number of 1s in the low-order bits followed
* by nothing but 0s in the high-order bits. The latter case
* implies it's of the form 2^n-1.
*/
ASSERT(stencil_max_value > 0 && ((stencil_max_value + 1) & stencil_max_value) == 0);
switch(stencil_op) {
case PIPE_STENCIL_OP_KEEP:
/* newS = S */
spe_move(f, newS_reg, fbS_reg);
break;
case PIPE_STENCIL_OP_ZERO:
/* newS = 0 */
spe_zero(f, newS_reg);
break;
case PIPE_STENCIL_OP_REPLACE:
/* newS = stencil reference value */
spe_load_uint(f, newS_reg, stencil_ref_value);
break;
case PIPE_STENCIL_OP_INCR: {
/* newS = (s == max ? max : s + 1) */
int equals_reg = spe_allocate_available_register(f);
spe_compare_equal_uint(f, equals_reg, fbS_reg, stencil_max_value);
/* Add Word Immediate computes rT = rA + 10-bit signed immediate */
spe_ai(f, newS_reg, fbS_reg, 1);
/* Select from the current value or the new value based on the equality test */
spe_selb(f, newS_reg, newS_reg, fbS_reg, equals_reg);
spe_release_register(f, equals_reg);
break;
}
case PIPE_STENCIL_OP_DECR: {
/* newS = (s == 0 ? 0 : s - 1) */
int equals_reg = spe_allocate_available_register(f);
spe_compare_equal_uint(f, equals_reg, fbS_reg, 0);
/* Add Word Immediate with a (-1) value works */
spe_ai(f, newS_reg, fbS_reg, -1);
/* Select from the current value or the new value based on the equality test */
spe_selb(f, newS_reg, newS_reg, fbS_reg, equals_reg);
spe_release_register(f, equals_reg);
break;
}
case PIPE_STENCIL_OP_INCR_WRAP:
/* newS = (s == max ? 0 : s + 1), but since max is 2^n-1, we can
* do a normal add and mask off the correct bits
*/
spe_ai(f, newS_reg, fbS_reg, 1);
spe_and_uint(f, newS_reg, newS_reg, stencil_max_value);
break;
case PIPE_STENCIL_OP_DECR_WRAP:
/* newS = (s == 0 ? max : s - 1), but we'll pull the same mask trick as above */
spe_ai(f, newS_reg, fbS_reg, -1);
spe_and_uint(f, newS_reg, newS_reg, stencil_max_value);
break;
case PIPE_STENCIL_OP_INVERT:
/* newS = ~s. We take advantage of the mask/max value to invert only
* the valid bits for the field so we don't have to do an extra "and".
*/
spe_xor_uint(f, newS_reg, fbS_reg, stencil_max_value);
break;
default:
ASSERT(0);
}
}
/**
* This function generates code to get all the necessary possible
* stencil values. For each of the output registers (fail_reg,
* zfail_reg, and zpass_reg), it either allocates a new register
* and calculates a new set of values based on the stencil operation,
* or it reuses a register allocation and calculation done for an
* earlier (matching) operation, or it reuses the fbS_reg register
* (if the stencil operation is KEEP, which doesn't change the
* stencil buffer).
*
* Since this function allocates a variable number of registers,
* to avoid incurring complex logic to free them, they should
* be allocated after a spe_allocate_register_set() call
* and released by the corresponding spe_release_register_set() call.
*/
static void
gen_get_stencil_values(struct spe_function *f,
const struct pipe_stencil_state *stencil,
const uint depth_enabled,
int fbS_reg,
int *fail_reg,
int *zfail_reg,
int *zpass_reg)
{
uint zfail_op;
/* Stenciling had better be enabled here */
ASSERT(stencil->enabled);
/* If the depth test is not enabled, it is treated as though it always
* passes, which means that the zfail_op is not considered - a
* failing stencil test triggers the fail_op, and a passing one
* triggers the zpass_op
*
* As an optimization, override calculation of the zfail_op values
* if they aren't going to be used. By setting the value of
* the operation to PIPE_STENCIL_OP_KEEP, its value will be assumed
* to match the incoming stencil values, and no calculation will
* be done.
*/
if (depth_enabled) {
zfail_op = stencil->zfail_op;
}
else {
zfail_op = PIPE_STENCIL_OP_KEEP;
}
/* One-sided or front-facing stencil */
if (stencil->fail_op == PIPE_STENCIL_OP_KEEP) {
*fail_reg = fbS_reg;
}
else {
*fail_reg = spe_allocate_available_register(f);
gen_stencil_values(f, stencil->fail_op, stencil->ref_value,
0xff, fbS_reg, *fail_reg);
}
/* Check the possibly overridden value, not the structure value */
if (zfail_op == PIPE_STENCIL_OP_KEEP) {
*zfail_reg = fbS_reg;
}
else if (zfail_op == stencil->fail_op) {
*zfail_reg = *fail_reg;
}
else {
*zfail_reg = spe_allocate_available_register(f);
gen_stencil_values(f, stencil->zfail_op, stencil->ref_value,
0xff, fbS_reg, *zfail_reg);
}
if (stencil->zpass_op == PIPE_STENCIL_OP_KEEP) {
*zpass_reg = fbS_reg;
}
else if (stencil->zpass_op == stencil->fail_op) {
*zpass_reg = *fail_reg;
}
else if (stencil->zpass_op == zfail_op) {
*zpass_reg = *zfail_reg;
}
else {
*zpass_reg = spe_allocate_available_register(f);
gen_stencil_values(f, stencil->zpass_op, stencil->ref_value,
0xff, fbS_reg, *zpass_reg);
}
}
/**
* Note that fbZ_reg may *not* be set on entry, if in fact
* the depth test is not enabled. This function must not use
* the register if depth is not enabled.
*/
static boolean
gen_stencil_depth_test(struct spe_function *f,
const struct pipe_depth_stencil_alpha_state *dsa,
const uint facing,
const int mask_reg, const int fragZ_reg,
const int fbZ_reg, const int fbS_reg)
{
/* True if we've generated code that could require writeback to the
* depth and/or stencil buffers
*/
boolean modified_buffers = FALSE;
boolean need_to_calculate_stencil_values;
boolean need_to_writemask_stencil_values;
struct pipe_stencil_state *stencil;
/* Registers. We may or may not actually allocate these, depending
* on whether the state values indicate that we need them.
*/
int stencil_pass_reg, stencil_fail_reg;
int stencil_fail_values, stencil_pass_depth_fail_values, stencil_pass_depth_pass_values;
int stencil_writemask_reg;
int zmask_reg;
int newS_reg;
/* Stenciling is quite complex: up to six different configurable stencil
* operations/calculations can be required (three each for front-facing
* and back-facing fragments). Many of those operations will likely
* be identical, so there's good reason to try to avoid calculating
* the same values more than once (which unfortunately makes the code less
* straightforward).
*
* To make register management easier, we start a new
* register set; we can release all the registers in the set at
* once, and avoid having to keep track of exactly which registers
* we allocate. We can still allocate and free registers as
* desired (if we know we no longer need a register), but we don't
* have to spend the complexity to track the more difficult variant
* register usage scenarios.
*/
spe_comment(f, 0, "Allocating stencil register set");
spe_allocate_register_set(f);
/* The facing we're given is the fragment facing; it doesn't
* exactly match the stencil facing. If stencil is enabled,
* but two-sided stencil is *not* enabled, we use the same
* stencil settings for both front- and back-facing fragments.
* We only use the "back-facing" stencil for backfacing fragments
* if two-sided stenciling is enabled.
*/
if (facing == CELL_FACING_BACK && dsa->stencil[1].enabled) {
stencil = &dsa->stencil[1];
}
else {
stencil = &dsa->stencil[0];
}
/* Calculate the writemask. If the writemask is trivial (either
* all 0s, meaning that we don't need to calculate any stencil values
* because they're not going to change the stencil anyway, or all 1s,
* meaning that we have to calculate the stencil values but do not
* need to mask them), we can avoid generating code. Don't forget
* that we need to consider backfacing stencil, if enabled.
*
* Note that if the backface stencil is *not* enabled, the backface
* stencil will have the same values as the frontface stencil.
*/
if (stencil->fail_op == PIPE_STENCIL_OP_KEEP &&
stencil->zfail_op == PIPE_STENCIL_OP_KEEP &&
stencil->zpass_op == PIPE_STENCIL_OP_KEEP) {
need_to_calculate_stencil_values = FALSE;
need_to_writemask_stencil_values = FALSE;
}
else if (stencil->writemask == 0x0) {
/* All changes are writemasked out, so no need to calculate
* what those changes might be, and no need to write anything back.
*/
need_to_calculate_stencil_values = FALSE;
need_to_writemask_stencil_values = FALSE;
}
else if (stencil->writemask == 0xff) {
/* Still trivial, but a little less so. We need to write the stencil
* values, but we don't need to mask them.
*/
need_to_calculate_stencil_values = TRUE;
need_to_writemask_stencil_values = FALSE;
}
else {
/* The general case: calculate, mask, and write */
need_to_calculate_stencil_values = TRUE;
need_to_writemask_stencil_values = TRUE;
/* While we're here, generate code that calculates what the
* writemask should be. If backface stenciling is enabled,
* and the backface writemask is not the same as the frontface
* writemask, we'll have to generate code that merges the
* two masks into a single effective mask based on fragment facing.
*/
spe_comment(f, 0, "Computing stencil writemask");
stencil_writemask_reg = spe_allocate_available_register(f);
spe_load_uint(f, stencil_writemask_reg, dsa->stencil[facing].writemask);
}
/* At least one-sided stenciling must be on. Generate code that
* runs the stencil test on the basic/front-facing stencil, leaving
* the mask of passing stencil bits in stencil_pass_reg. This mask will
* be used both to mask the set of active pixels, and also to
* determine how the stencil buffer changes.
*
* This test will *not* change the value in mask_reg (because we don't
* yet know whether to apply the two-sided stencil or one-sided stencil).
*/
spe_comment(f, 0, "Running basic stencil test");
stencil_pass_reg = spe_allocate_available_register(f);
gen_stencil_test(f, stencil, 0xff, mask_reg, fbS_reg, stencil_pass_reg);
/* Generate code that, given the mask of valid fragments and the
* mask of valid fragments that passed the stencil test, computes
* the mask of valid fragments that failed the stencil test. We
* have to do this before we run a depth test (because the
* depth test should not be performed on fragments that failed the
* stencil test, and because the depth test will update the
* mask of valid fragments based on the results of the depth test).
*/
spe_comment(f, 0, "Computing stencil fail mask and updating fragment mask");
stencil_fail_reg = spe_allocate_available_register(f);
spe_andc(f, stencil_fail_reg, mask_reg, stencil_pass_reg);
/* Now remove the stenciled-out pixels from the valid fragment mask,
* so we can later use the valid fragment mask in the depth test.
*/
spe_and(f, mask_reg, mask_reg, stencil_pass_reg);
/* We may not need to calculate stencil values, if the writemask is off */
if (need_to_calculate_stencil_values) {
/* Generate code that calculates exactly which stencil values we need,
* without calculating the same value twice (say, if two different
* stencil ops have the same value). This code will work for one-sided
* and two-sided stenciling (so that we take into account that operations
* may match between front and back stencils), and will also take into
* account whether the depth test is enabled (if the depth test is off,
* we don't need any of the zfail results, because the depth test always
* is considered to pass if it is disabled). Any register value that
* does not need to be calculated will come back with the same value
* that's in fbS_reg.
*
* This function will allocate a variant number of registers that
* will be released as part of the register set.
*/
spe_comment(f, 0, facing == CELL_FACING_FRONT
? "Computing front-facing stencil values"
: "Computing back-facing stencil values");
gen_get_stencil_values(f, stencil, dsa->depth.enabled, fbS_reg,
&stencil_fail_values, &stencil_pass_depth_fail_values,
&stencil_pass_depth_pass_values);
}
/* We now have all the stencil values we need. We also need
* the results of the depth test to figure out which
* stencil values will become the new stencil values. (Even if
* we aren't actually calculating stencil values, we need to apply
* the depth test if it's enabled.)
*
* The code generated by gen_depth_test() returns the results of the
* test in the given register, but also alters the mask_reg based
* on the results of the test.
*/
if (dsa->depth.enabled) {
spe_comment(f, 0, "Running stencil depth test");
zmask_reg = spe_allocate_available_register(f);
modified_buffers |= gen_depth_test(f, dsa, mask_reg, fragZ_reg,
fbZ_reg, zmask_reg);
}
if (need_to_calculate_stencil_values) {
/* If we need to writemask the stencil values before going into
* the stencil buffer, we'll have to use a new register to
* hold the new values. If not, we can just keep using the
* current register.
*/
if (need_to_writemask_stencil_values) {
newS_reg = spe_allocate_available_register(f);
spe_comment(f, 0, "Saving current stencil values for writemasking");
spe_move(f, newS_reg, fbS_reg);
}
else {
newS_reg = fbS_reg;
}
/* Merge in the selected stencil fail values */
if (stencil_fail_values != fbS_reg) {
spe_comment(f, 0, "Loading stencil fail values");
spe_selb(f, newS_reg, newS_reg, stencil_fail_values, stencil_fail_reg);
modified_buffers = TRUE;
}
/* Same for the stencil pass/depth fail values. If this calculation
* is not needed (say, if depth test is off), then the
* stencil_pass_depth_fail_values register will be equal to fbS_reg
* and we'll skip the calculation.
*/
if (stencil_pass_depth_fail_values != fbS_reg) {
/* We don't actually have a stencil pass/depth fail mask yet.
* Calculate it here from the stencil passing mask and the
* depth passing mask. Note that zmask_reg *must* have been
* set above if we're here.
*/
uint stencil_pass_depth_fail_mask =
spe_allocate_available_register(f);
spe_comment(f, 0, "Loading stencil pass/depth fail values");
spe_andc(f, stencil_pass_depth_fail_mask, stencil_pass_reg, zmask_reg);
spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_fail_values,
stencil_pass_depth_fail_mask);
spe_release_register(f, stencil_pass_depth_fail_mask);
modified_buffers = TRUE;
}
/* Same for the stencil pass/depth pass mask. Note that we
* *can* get here with zmask_reg being unset (if the depth
* test is off but the stencil test is on). In this case,
* we assume the depth test passes, and don't need to mask
* the stencil pass mask with the Z mask.
*/
if (stencil_pass_depth_pass_values != fbS_reg) {
if (dsa->depth.enabled) {
uint stencil_pass_depth_pass_mask = spe_allocate_available_register(f);
/* We'll need a separate register */
spe_comment(f, 0, "Loading stencil pass/depth pass values");
spe_and(f, stencil_pass_depth_pass_mask, stencil_pass_reg, zmask_reg);
spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_pass_values, stencil_pass_depth_pass_mask);
spe_release_register(f, stencil_pass_depth_pass_mask);
}
else {
/* We can use the same stencil-pass register */
spe_comment(f, 0, "Loading stencil pass values");
spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_pass_values, stencil_pass_reg);
}
modified_buffers = TRUE;
}
/* Almost done. If we need to writemask, do it now, leaving the
* results in the fbS_reg register passed in. If we don't need
* to writemask, then the results are *already* in the fbS_reg,
* so there's nothing more to do.
*/
if (need_to_writemask_stencil_values && modified_buffers) {
/* The Select Bytes command makes a fine writemask. Where
* the mask is 0, the first (original) values are retained,
* effectively masking out changes. Where the mask is 1, the
* second (new) values are retained, incorporating changes.
*/
spe_comment(f, 0, "Writemasking new stencil values");
spe_selb(f, fbS_reg, fbS_reg, newS_reg, stencil_writemask_reg);
}
} /* done calculating stencil values */
/* The stencil and/or depth values have been applied, and the
* mask_reg, fbS_reg, and fbZ_reg values have been updated.
* We're all done, except that we've allocated a fair number
* of registers that we didn't bother tracking. Release all
* those registers as part of the register set, and go home.
*/
spe_comment(f, 0, "Releasing stencil register set");
spe_release_register_set(f);
/* Return TRUE if we could have modified the stencil and/or
* depth buffers.
*/
return modified_buffers;
}
/**
* Generate depth and/or stencil test code.
* \param cell context
* \param dsa depth/stencil/alpha state
* \param f spe function to emit
* \param facing either CELL_FACING_FRONT or CELL_FACING_BACK
* \param mask_reg register containing the pixel alive/dead mask
* \param depth_tile_reg register containing address of z/stencil tile
* \param quad_offset_reg offset to quad from start of tile
* \param fragZ_reg register containg fragment Z values
*/
static void
gen_depth_stencil(struct cell_context *cell,
const struct pipe_depth_stencil_alpha_state *dsa,
struct spe_function *f,
uint facing,
int mask_reg,
int depth_tile_reg,
int quad_offset_reg,
int fragZ_reg)
{
const enum pipe_format zs_format = cell->framebuffer.zsbuf->format;
boolean write_depth_stencil;
/* framebuffer's combined z/stencil values register */
int fbZS_reg = spe_allocate_available_register(f);
/* Framebufer Z values register */
int fbZ_reg = spe_allocate_available_register(f);
/* Framebuffer stencil values register (may not be used) */
int fbS_reg = spe_allocate_available_register(f);
/* 24-bit mask register (may not be used) */
int zmask_reg = spe_allocate_available_register(f);
/**
* The following code:
* 1. fetch quad of packed Z/S values from the framebuffer tile.
* 2. extract the separate the Z and S values from packed values
* 3. convert fragment Z values from float in [0,1] to 32/24/16-bit ints
*
* The instructions for doing this are interleaved for better performance.
*/
spe_comment(f, 0, "Fetch Z/stencil quad from tile");
switch(zs_format) {
case PIPE_FORMAT_S8Z24_UNORM: /* fall through */
case PIPE_FORMAT_X8Z24_UNORM:
/* prepare mask to extract Z vals from ZS vals */
spe_load_uint(f, zmask_reg, 0x00ffffff);
/* convert fragment Z from [0,1] to 32-bit ints */
spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
/* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
/* right shift 32-bit fragment Z to 24 bits */
spe_rotmi(f, fragZ_reg, fragZ_reg, -8);
/* extract 24-bit Z values from ZS values by masking */
spe_and(f, fbZ_reg, fbZS_reg, zmask_reg);
/* extract 8-bit stencil values by shifting */
spe_rotmi(f, fbS_reg, fbZS_reg, -24);
break;
case PIPE_FORMAT_Z24S8_UNORM: /* fall through */
case PIPE_FORMAT_Z24X8_UNORM:
/* convert fragment Z from [0,1] to 32-bit ints */
spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
/* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
/* right shift 32-bit fragment Z to 24 bits */
spe_rotmi(f, fragZ_reg, fragZ_reg, -8);
/* extract 24-bit Z values from ZS values by shifting */
spe_rotmi(f, fbZ_reg, fbZS_reg, -8);
/* extract 8-bit stencil values by masking */
spe_and_uint(f, fbS_reg, fbZS_reg, 0x000000ff);
break;
case PIPE_FORMAT_Z32_UNORM:
/* Load: fbZ_reg = memory[depth_tile_reg + offset_reg] */
spe_lqx(f, fbZ_reg, depth_tile_reg, quad_offset_reg);
/* convert fragment Z from [0,1] to 32-bit ints */
spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
/* No stencil, so can't do anything there */
break;
case PIPE_FORMAT_Z16_UNORM:
/* XXX This code for 16bpp Z is broken! */
/* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
/* Copy over 4 32-bit values */
spe_move(f, fbZ_reg, fbZS_reg);
/* convert Z from [0,1] to 16-bit ints */
spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
spe_rotmi(f, fragZ_reg, fragZ_reg, -16);
/* No stencil */
break;
default:
ASSERT(0); /* invalid format */
}
/* If stencil is enabled, use the stencil-specific code
* generator to generate both the stencil and depth (if needed)
* tests. Otherwise, if only depth is enabled, generate
* a quick depth test. The test generators themselves will
* report back whether the depth/stencil buffer has to be
* written back.
*/
if (dsa->stencil[0].enabled) {
/* This will perform the stencil and depth tests, and update
* the mask_reg, fbZ_reg, and fbS_reg as required by the
* tests.
*/
ASSERT(fbS_reg >= 0);
spe_comment(f, 0, "Perform stencil test");
/* Note that fbZ_reg may not be set on entry, if stenciling
* is enabled but there's no Z-buffer. The
* gen_stencil_depth_test() function must ignore the
* fbZ_reg register if depth is not enabled.
*/
write_depth_stencil = gen_stencil_depth_test(f, dsa, facing,
mask_reg, fragZ_reg,
fbZ_reg, fbS_reg);
}
else if (dsa->depth.enabled) {
int zmask_reg = spe_allocate_available_register(f);
ASSERT(fbZ_reg >= 0);
spe_comment(f, 0, "Perform depth test");
write_depth_stencil = gen_depth_test(f, dsa, mask_reg, fragZ_reg,
fbZ_reg, zmask_reg);
spe_release_register(f, zmask_reg);
}
else {
write_depth_stencil = FALSE;
}
if (write_depth_stencil) {
/* Merge latest Z and Stencil values into fbZS_reg.
* fbZ_reg has four Z vals in bits [23..0] or bits [15..0].
* fbS_reg has four 8-bit Z values in bits [7..0].
*/
spe_comment(f, 0, "Store quad's depth/stencil values in tile");
if (zs_format == PIPE_FORMAT_S8Z24_UNORM ||
zs_format == PIPE_FORMAT_X8Z24_UNORM) {
spe_shli(f, fbS_reg, fbS_reg, 24); /* fbS = fbS << 24 */
spe_or(f, fbZS_reg, fbS_reg, fbZ_reg); /* fbZS = fbS | fbZ */
}
else if (zs_format == PIPE_FORMAT_Z24S8_UNORM ||
zs_format == PIPE_FORMAT_Z24X8_UNORM) {
spe_shli(f, fbZ_reg, fbZ_reg, 8); /* fbZ = fbZ << 8 */
spe_or(f, fbZS_reg, fbS_reg, fbZ_reg); /* fbZS = fbS | fbZ */
}
else if (zs_format == PIPE_FORMAT_Z32_UNORM) {
spe_move(f, fbZS_reg, fbZ_reg); /* fbZS = fbZ */
}
else if (zs_format == PIPE_FORMAT_Z16_UNORM) {
spe_move(f, fbZS_reg, fbZ_reg); /* fbZS = fbZ */
}
else if (zs_format == PIPE_FORMAT_S8_UNORM) {
ASSERT(0); /* XXX to do */
}
else {
ASSERT(0); /* bad zs_format */
}
/* Store: memory[depth_tile_reg + quad_offset_reg] = fbZS */
spe_stqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
}
/* Don't need these any more */
spe_release_register(f, fbZS_reg);
spe_release_register(f, fbZ_reg);
spe_release_register(f, fbS_reg);
spe_release_register(f, zmask_reg);
}
/**
* Generate SPE code to implement the fragment operations (alpha test,
* depth test, stencil test, blending, colormask, and final
* framebuffer write) as specified by the current context state.
*
* Logically, this code will be called after running the fragment
* shader. But under some circumstances we could run some of this
* code before the fragment shader to cull fragments/quads that are
* totally occluded/discarded.
*
* XXX we only support PIPE_FORMAT_Z24S8_UNORM z/stencil buffer right now.
*
* See the spu_default_fragment_ops() function to see how the per-fragment
* operations would be done with ordinary C code.
* The code we generate here though has no branches, is SIMD, etc and
* should be much faster.
*
* \param cell the rendering context (in)
* \param facing whether the generated code is for front-facing or
* back-facing fragments
* \param f the generated function (in/out); on input, the function
* must already have been initialized. On exit, whatever
* instructions within the generated function have had
* the fragment ops appended.
*/
void
cell_gen_fragment_function(struct cell_context *cell,
const uint facing,
struct spe_function *f)
{
const struct pipe_depth_stencil_alpha_state *dsa = cell->depth_stencil;
const struct pipe_blend_state *blend = cell->blend;
const struct pipe_blend_color *blend_color = &cell->blend_color;
const enum pipe_format color_format = cell->framebuffer.cbufs[0]->format;
/* For SPE function calls: reg $3 = first param, $4 = second param, etc. */
const int x_reg = 3; /* uint */
const int y_reg = 4; /* uint */
const int color_tile_reg = 5; /* tile_t * */
const int depth_tile_reg = 6; /* tile_t * */
const int fragZ_reg = 7; /* vector float */
const int fragR_reg = 8; /* vector float */
const int fragG_reg = 9; /* vector float */
const int fragB_reg = 10; /* vector float */
const int fragA_reg = 11; /* vector float */
const int mask_reg = 12; /* vector uint */
ASSERT(facing == CELL_FACING_FRONT || facing == CELL_FACING_BACK);
/* offset of quad from start of tile
* XXX assuming 4-byte pixels for color AND Z/stencil!!!!
*/
int quad_offset_reg;
int fbRGBA_reg; /**< framebuffer's RGBA colors for quad */
if (cell->debug_flags & CELL_DEBUG_ASM) {
spe_print_code(f, TRUE);
spe_indent(f, 8);
spe_comment(f, -4, facing == CELL_FACING_FRONT
? "Begin front-facing per-fragment ops"
: "Begin back-facing per-fragment ops");
}
spe_allocate_register(f, x_reg);
spe_allocate_register(f, y_reg);
spe_allocate_register(f, color_tile_reg);
spe_allocate_register(f, depth_tile_reg);
spe_allocate_register(f, fragZ_reg);
spe_allocate_register(f, fragR_reg);
spe_allocate_register(f, fragG_reg);
spe_allocate_register(f, fragB_reg);
spe_allocate_register(f, fragA_reg);
spe_allocate_register(f, mask_reg);
quad_offset_reg = spe_allocate_available_register(f);
fbRGBA_reg = spe_allocate_available_register(f);
/* compute offset of quad from start of tile, in bytes */
{
int x2_reg = spe_allocate_available_register(f);
int y2_reg = spe_allocate_available_register(f);
ASSERT(TILE_SIZE == 32);
spe_comment(f, 0, "Compute quad offset within tile");
spe_rotmi(f, y2_reg, y_reg, -1); /* y2 = y / 2 */
spe_rotmi(f, x2_reg, x_reg, -1); /* x2 = x / 2 */
spe_shli(f, y2_reg, y2_reg, 4); /* y2 *= 16 */
spe_a(f, quad_offset_reg, y2_reg, x2_reg); /* offset = y2 + x2 */
spe_shli(f, quad_offset_reg, quad_offset_reg, 4); /* offset *= 16 */
spe_release_register(f, x2_reg);
spe_release_register(f, y2_reg);
}
/* Generate the alpha test, if needed. */
if (dsa->alpha.enabled) {
gen_alpha_test(dsa, f, mask_reg, fragA_reg);
}
/* generate depth and/or stencil test code */
if (dsa->depth.enabled || dsa->stencil[0].enabled) {
gen_depth_stencil(cell, dsa, f,
facing,
mask_reg,
depth_tile_reg,
quad_offset_reg,
fragZ_reg);
}
/* Get framebuffer quad/colors. We'll need these for blending,
* color masking, and to obey the quad/pixel mask.
* Load: fbRGBA_reg = memory[color_tile + quad_offset]
* Note: if mask={~0,~0,~0,~0} and we're not blending or colormasking
* we could skip this load.
*/
spe_comment(f, 0, "Fetch quad colors from tile");
spe_lqx(f, fbRGBA_reg, color_tile_reg, quad_offset_reg);
if (blend->rt[0].blend_enable) {
spe_comment(f, 0, "Perform blending");
gen_blend(blend, blend_color, f, color_format,
fragR_reg, fragG_reg, fragB_reg, fragA_reg, fbRGBA_reg);
}
/*
* Write fragment colors to framebuffer/tile.
* This involves converting the fragment colors from float[4] to the
* tile's specific format and obeying the quad/pixel mask.
*/
{
int rgba_reg = spe_allocate_available_register(f);
/* Pack four float colors as four 32-bit int colors */
spe_comment(f, 0, "Convert float quad colors to packed int framebuffer colors");
gen_pack_colors(f, color_format,
fragR_reg, fragG_reg, fragB_reg, fragA_reg,
rgba_reg);
if (blend->logicop_enable) {
spe_comment(f, 0, "Compute logic op");
gen_logicop(blend, f, rgba_reg, fbRGBA_reg);
}
if (blend->rt[0].colormask != PIPE_MASK_RGBA) {
spe_comment(f, 0, "Compute color mask");
gen_colormask(f, blend->rt[0].colormask, color_format, rgba_reg, fbRGBA_reg);
}
/* Mix fragment colors with framebuffer colors using the quad/pixel mask:
* if (mask[i])
* rgba[i] = rgba[i];
* else
* rgba[i] = framebuffer[i];
*/
spe_selb(f, rgba_reg, fbRGBA_reg, rgba_reg, mask_reg);
/* Store updated quad in tile:
* memory[color_tile + quad_offset] = rgba_reg;
*/
spe_comment(f, 0, "Store quad colors into color tile");
spe_stqx(f, rgba_reg, color_tile_reg, quad_offset_reg);
spe_release_register(f, rgba_reg);
}
//printf("gen_fragment_ops nr instructions: %u\n", f->num_inst);
spe_bi(f, SPE_REG_RA, 0, 0); /* return from function call */
spe_release_register(f, fbRGBA_reg);
spe_release_register(f, quad_offset_reg);
if (cell->debug_flags & CELL_DEBUG_ASM) {
char buffer[1024];
sprintf(buffer, "End %s-facing per-fragment ops: %d instructions",
facing == CELL_FACING_FRONT ? "front" : "back", f->num_inst);
spe_comment(f, -4, buffer);
}
}
|