summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/cell/spu/spu_exec.c
blob: 69b05261209584bb5dc4f22a863943413403a8fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
/**************************************************************************
 * 
 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
 * All Rights Reserved.
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 * 
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 * 
 **************************************************************************/

/**
 * TGSI interpretor/executor.
 *
 * Flow control information:
 *
 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
 * care since a condition may be true for some quad components but false
 * for other components.
 *
 * We basically execute all statements (even if they're in the part of
 * an IF/ELSE clause that's "not taken") and use a special mask to
 * control writing to destination registers.  This is the ExecMask.
 * See store_dest().
 *
 * The ExecMask is computed from three other masks (CondMask, LoopMask and
 * ContMask) which are controlled by the flow control instructions (namely:
 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
 *
 *
 * Authors:
 *   Michal Krol
 *   Brian Paul
 */

#include <transpose_matrix4x4.h>
#include <simdmath/ceilf4.h>
#include <simdmath/cosf4.h>
#include <simdmath/divf4.h>
#include <simdmath/floorf4.h>
#include <simdmath/log2f4.h>
#include <simdmath/powf4.h>
#include <simdmath/sinf4.h>
#include <simdmath/sqrtf4.h>
#include <simdmath/truncf4.h>

#include "pipe/p_compiler.h"
#include "pipe/p_state.h"
#include "pipe/p_util.h"
#include "pipe/p_shader_tokens.h"
#include "tgsi/util/tgsi_parse.h"
#include "tgsi/util/tgsi_util.h"
#include "spu_exec.h"
#include "spu_main.h"
#include "spu_vertex_shader.h"
#include "spu_dcache.h"
#include "cell/common.h"

#define TILE_TOP_LEFT     0
#define TILE_TOP_RIGHT    1
#define TILE_BOTTOM_LEFT  2
#define TILE_BOTTOM_RIGHT 3

/*
 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
 */
#define TEMP_0_I           TGSI_EXEC_TEMP_00000000_I
#define TEMP_0_C           TGSI_EXEC_TEMP_00000000_C
#define TEMP_7F_I          TGSI_EXEC_TEMP_7FFFFFFF_I
#define TEMP_7F_C          TGSI_EXEC_TEMP_7FFFFFFF_C
#define TEMP_80_I          TGSI_EXEC_TEMP_80000000_I
#define TEMP_80_C          TGSI_EXEC_TEMP_80000000_C
#define TEMP_FF_I          TGSI_EXEC_TEMP_FFFFFFFF_I
#define TEMP_FF_C          TGSI_EXEC_TEMP_FFFFFFFF_C
#define TEMP_1_I           TGSI_EXEC_TEMP_ONE_I
#define TEMP_1_C           TGSI_EXEC_TEMP_ONE_C
#define TEMP_2_I           TGSI_EXEC_TEMP_TWO_I
#define TEMP_2_C           TGSI_EXEC_TEMP_TWO_C
#define TEMP_128_I         TGSI_EXEC_TEMP_128_I
#define TEMP_128_C         TGSI_EXEC_TEMP_128_C
#define TEMP_M128_I        TGSI_EXEC_TEMP_MINUS_128_I
#define TEMP_M128_C        TGSI_EXEC_TEMP_MINUS_128_C
#define TEMP_KILMASK_I     TGSI_EXEC_TEMP_KILMASK_I
#define TEMP_KILMASK_C     TGSI_EXEC_TEMP_KILMASK_C
#define TEMP_OUTPUT_I      TGSI_EXEC_TEMP_OUTPUT_I
#define TEMP_OUTPUT_C      TGSI_EXEC_TEMP_OUTPUT_C
#define TEMP_PRIMITIVE_I   TGSI_EXEC_TEMP_PRIMITIVE_I
#define TEMP_PRIMITIVE_C   TGSI_EXEC_TEMP_PRIMITIVE_C
#define TEMP_R0            TGSI_EXEC_TEMP_R0

#define FOR_EACH_CHANNEL(CHAN)\
   for (CHAN = 0; CHAN < 4; CHAN++)

#define IS_CHANNEL_ENABLED(INST, CHAN)\
   ((INST).FullDstRegisters[0].DstRegister.WriteMask & (1 << (CHAN)))

#define IS_CHANNEL_ENABLED2(INST, CHAN)\
   ((INST).FullDstRegisters[1].DstRegister.WriteMask & (1 << (CHAN)))

#define FOR_EACH_ENABLED_CHANNEL(INST, CHAN)\
   FOR_EACH_CHANNEL( CHAN )\
      if (IS_CHANNEL_ENABLED( INST, CHAN ))

#define FOR_EACH_ENABLED_CHANNEL2(INST, CHAN)\
   FOR_EACH_CHANNEL( CHAN )\
      if (IS_CHANNEL_ENABLED2( INST, CHAN ))


/** The execution mask depends on the conditional mask and the loop mask */
#define UPDATE_EXEC_MASK(MACH) \
      MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->FuncMask


#define CHAN_X  0
#define CHAN_Y  1
#define CHAN_Z  2
#define CHAN_W  3



/**
 * Initialize machine state by expanding tokens to full instructions,
 * allocating temporary storage, setting up constants, etc.
 * After this, we can call spu_exec_machine_run() many times.
 */
void
spu_exec_machine_init(struct spu_exec_machine *mach,
                      uint numSamplers,
                      struct spu_sampler *samplers,
                      unsigned processor)
{
   const qword zero = si_il(0);
   const qword not_zero = si_il(~0);

   (void) numSamplers;
   mach->Samplers = samplers;
   mach->Processor = processor;
   mach->Addrs = &mach->Temps[TGSI_EXEC_NUM_TEMPS];

   /* Setup constants. */
   mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q = zero;
   mach->Temps[TEMP_FF_I].xyzw[TEMP_FF_C].q = not_zero;
   mach->Temps[TEMP_7F_I].xyzw[TEMP_7F_C].q = si_shli(not_zero, -1);
   mach->Temps[TEMP_80_I].xyzw[TEMP_80_C].q = si_shli(not_zero, 31);

   mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q = (qword) spu_splats(1.0f);
   mach->Temps[TEMP_2_I].xyzw[TEMP_2_C].q = (qword) spu_splats(2.0f);
   mach->Temps[TEMP_128_I].xyzw[TEMP_128_C].q = (qword) spu_splats(128.0f);
   mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C].q = (qword) spu_splats(-128.0f);
}


static INLINE qword
micro_abs(qword src)
{
   return si_rotmi(si_shli(src, 1), -1);
}

static INLINE qword
micro_ceil(qword src)
{
   return (qword) _ceilf4((vec_float4) src);
}

static INLINE qword
micro_cos(qword src)
{
   return (qword) _cosf4((vec_float4) src);
}

static const qword br_shuf = {
   TILE_BOTTOM_RIGHT + 0, TILE_BOTTOM_RIGHT + 1,
   TILE_BOTTOM_RIGHT + 2, TILE_BOTTOM_RIGHT + 3,
   TILE_BOTTOM_RIGHT + 0, TILE_BOTTOM_RIGHT + 1,
   TILE_BOTTOM_RIGHT + 2, TILE_BOTTOM_RIGHT + 3,
   TILE_BOTTOM_RIGHT + 0, TILE_BOTTOM_RIGHT + 1,
   TILE_BOTTOM_RIGHT + 2, TILE_BOTTOM_RIGHT + 3,
   TILE_BOTTOM_RIGHT + 0, TILE_BOTTOM_RIGHT + 1,
   TILE_BOTTOM_RIGHT + 2, TILE_BOTTOM_RIGHT + 3,
};

static const qword bl_shuf = {
   TILE_BOTTOM_LEFT + 0, TILE_BOTTOM_LEFT + 1,
   TILE_BOTTOM_LEFT + 2, TILE_BOTTOM_LEFT + 3,
   TILE_BOTTOM_LEFT + 0, TILE_BOTTOM_LEFT + 1,
   TILE_BOTTOM_LEFT + 2, TILE_BOTTOM_LEFT + 3,
   TILE_BOTTOM_LEFT + 0, TILE_BOTTOM_LEFT + 1,
   TILE_BOTTOM_LEFT + 2, TILE_BOTTOM_LEFT + 3,
   TILE_BOTTOM_LEFT + 0, TILE_BOTTOM_LEFT + 1,
   TILE_BOTTOM_LEFT + 2, TILE_BOTTOM_LEFT + 3,
};

static const qword tl_shuf = {
   TILE_TOP_LEFT + 0, TILE_TOP_LEFT + 1,
   TILE_TOP_LEFT + 2, TILE_TOP_LEFT + 3,
   TILE_TOP_LEFT + 0, TILE_TOP_LEFT + 1,
   TILE_TOP_LEFT + 2, TILE_TOP_LEFT + 3,
   TILE_TOP_LEFT + 0, TILE_TOP_LEFT + 1,
   TILE_TOP_LEFT + 2, TILE_TOP_LEFT + 3,
   TILE_TOP_LEFT + 0, TILE_TOP_LEFT + 1,
   TILE_TOP_LEFT + 2, TILE_TOP_LEFT + 3,
};

static qword
micro_ddx(qword src)
{
   qword bottom_right = si_shufb(src, src, br_shuf);
   qword bottom_left = si_shufb(src, src, bl_shuf);

   return si_fs(bottom_right, bottom_left);
}

static qword
micro_ddy(qword src)
{
   qword top_left = si_shufb(src, src, tl_shuf);
   qword bottom_left = si_shufb(src, src, bl_shuf);

   return si_fs(top_left, bottom_left);
}

static INLINE qword
micro_div(qword src0, qword src1)
{
   return (qword) _divf4((vec_float4) src0, (vec_float4) src1);
}

static qword
micro_flr(qword src)
{
   return (qword) _floorf4((vec_float4) src);
}

static qword
micro_frc(qword src)
{
   return si_fs(src, (qword) _floorf4((vec_float4) src));
}

static INLINE qword
micro_ge(qword src0, qword src1)
{
   return si_or(si_fceq(src0, src1), si_fcgt(src0, src1));
}

static qword
micro_lg2(qword src)
{
   return (qword) _log2f4((vec_float4) src);
}

static INLINE qword
micro_lt(qword src0, qword src1)
{
   const qword tmp = si_or(si_fceq(src0, src1), si_fcgt(src0, src1));

   return si_xori(tmp, 0xff);
}

static INLINE qword
micro_max(qword src0, qword src1)
{
   return si_selb(src1, src0, si_fcgt(src0, src1));
}

static INLINE qword
micro_min(qword src0, qword src1)
{
   return si_selb(src0, src1, si_fcgt(src0, src1));
}

static qword
micro_neg(qword src)
{
   return si_xor(src, (qword) spu_splats(0x80000000));
}

static qword
micro_set_sign(qword src)
{
   return si_or(src, (qword) spu_splats(0x80000000));
}

static qword
micro_pow(qword src0, qword src1)
{
   return (qword) _powf4((vec_float4) src0, (vec_float4) src1);
}

static qword
micro_rnd(qword src)
{
   const qword half = (qword) spu_splats(0.5f);

   /* May be able to use _roundf4.  There may be some difference, though.
    */
   return (qword) _floorf4((vec_float4) si_fa(src, half));
}

static INLINE qword
micro_ishr(qword src0, qword src1)
{
   return si_rotma(src0, si_sfi(src1, 0));
}

static qword
micro_trunc(qword src)
{
   return (qword) _truncf4((vec_float4) src);
}

static qword
micro_sin(qword src)
{
   return (qword) _sinf4((vec_float4) src);
}

static INLINE qword
micro_sqrt(qword src)
{
   return (qword) _sqrtf4((vec_float4) src);
}

static void
fetch_src_file_channel(
   const struct spu_exec_machine *mach,
   const uint file,
   const uint swizzle,
   const union spu_exec_channel *index,
   union spu_exec_channel *chan )
{
   switch( swizzle ) {
   case TGSI_EXTSWIZZLE_X:
   case TGSI_EXTSWIZZLE_Y:
   case TGSI_EXTSWIZZLE_Z:
   case TGSI_EXTSWIZZLE_W:
      switch( file ) {
      case TGSI_FILE_CONSTANT: {
         unsigned i;

         for (i = 0; i < 4; i++) {
            const float *ptr = mach->Consts[index->i[i]];
            float tmp[4];

            spu_dcache_fetch_unaligned((qword *) tmp,
                                       (uintptr_t)(ptr + swizzle),
                                       sizeof(float));

            chan->f[i] = tmp[0];
         }
         break;
      }

      case TGSI_FILE_INPUT:
         chan->u[0] = mach->Inputs[index->i[0]].xyzw[swizzle].u[0];
         chan->u[1] = mach->Inputs[index->i[1]].xyzw[swizzle].u[1];
         chan->u[2] = mach->Inputs[index->i[2]].xyzw[swizzle].u[2];
         chan->u[3] = mach->Inputs[index->i[3]].xyzw[swizzle].u[3];
         break;

      case TGSI_FILE_TEMPORARY:
         chan->u[0] = mach->Temps[index->i[0]].xyzw[swizzle].u[0];
         chan->u[1] = mach->Temps[index->i[1]].xyzw[swizzle].u[1];
         chan->u[2] = mach->Temps[index->i[2]].xyzw[swizzle].u[2];
         chan->u[3] = mach->Temps[index->i[3]].xyzw[swizzle].u[3];
         break;

      case TGSI_FILE_IMMEDIATE:
         assert( index->i[0] < (int) mach->ImmLimit );
         assert( index->i[1] < (int) mach->ImmLimit );
         assert( index->i[2] < (int) mach->ImmLimit );
         assert( index->i[3] < (int) mach->ImmLimit );

         chan->f[0] = mach->Imms[index->i[0]][swizzle];
         chan->f[1] = mach->Imms[index->i[1]][swizzle];
         chan->f[2] = mach->Imms[index->i[2]][swizzle];
         chan->f[3] = mach->Imms[index->i[3]][swizzle];
         break;

      case TGSI_FILE_ADDRESS:
         chan->u[0] = mach->Addrs[index->i[0]].xyzw[swizzle].u[0];
         chan->u[1] = mach->Addrs[index->i[1]].xyzw[swizzle].u[1];
         chan->u[2] = mach->Addrs[index->i[2]].xyzw[swizzle].u[2];
         chan->u[3] = mach->Addrs[index->i[3]].xyzw[swizzle].u[3];
         break;

      case TGSI_FILE_OUTPUT:
         /* vertex/fragment output vars can be read too */
         chan->u[0] = mach->Outputs[index->i[0]].xyzw[swizzle].u[0];
         chan->u[1] = mach->Outputs[index->i[1]].xyzw[swizzle].u[1];
         chan->u[2] = mach->Outputs[index->i[2]].xyzw[swizzle].u[2];
         chan->u[3] = mach->Outputs[index->i[3]].xyzw[swizzle].u[3];
         break;

      default:
         assert( 0 );
      }
      break;

   case TGSI_EXTSWIZZLE_ZERO:
      *chan = mach->Temps[TEMP_0_I].xyzw[TEMP_0_C];
      break;

   case TGSI_EXTSWIZZLE_ONE:
      *chan = mach->Temps[TEMP_1_I].xyzw[TEMP_1_C];
      break;

   default:
      assert( 0 );
   }
}

static void
fetch_source(
   const struct spu_exec_machine *mach,
   union spu_exec_channel *chan,
   const struct tgsi_full_src_register *reg,
   const uint chan_index )
{
   union spu_exec_channel index;
   uint swizzle;

   index.i[0] =
   index.i[1] =
   index.i[2] =
   index.i[3] = reg->SrcRegister.Index;

   if (reg->SrcRegister.Indirect) {
      union spu_exec_channel index2;
      union spu_exec_channel indir_index;

      index2.i[0] =
      index2.i[1] =
      index2.i[2] =
      index2.i[3] = reg->SrcRegisterInd.Index;

      swizzle = tgsi_util_get_src_register_swizzle(&reg->SrcRegisterInd,
                                                   CHAN_X);
      fetch_src_file_channel(
         mach,
         reg->SrcRegisterInd.File,
         swizzle,
         &index2,
         &indir_index );

      index.q = si_a(index.q, indir_index.q);
   }

   if( reg->SrcRegister.Dimension ) {
      switch( reg->SrcRegister.File ) {
      case TGSI_FILE_INPUT:
         index.q = si_mpyi(index.q, 17);
         break;
      case TGSI_FILE_CONSTANT:
         index.q = si_shli(index.q, 12);
         break;
      default:
         assert( 0 );
      }

      index.i[0] += reg->SrcRegisterDim.Index;
      index.i[1] += reg->SrcRegisterDim.Index;
      index.i[2] += reg->SrcRegisterDim.Index;
      index.i[3] += reg->SrcRegisterDim.Index;

      if (reg->SrcRegisterDim.Indirect) {
         union spu_exec_channel index2;
         union spu_exec_channel indir_index;

         index2.i[0] =
         index2.i[1] =
         index2.i[2] =
         index2.i[3] = reg->SrcRegisterDimInd.Index;

         swizzle = tgsi_util_get_src_register_swizzle( &reg->SrcRegisterDimInd, CHAN_X );
         fetch_src_file_channel(
            mach,
            reg->SrcRegisterDimInd.File,
            swizzle,
            &index2,
            &indir_index );

         index.q = si_a(index.q, indir_index.q);
      }
   }

   swizzle = tgsi_util_get_full_src_register_extswizzle( reg, chan_index );
   fetch_src_file_channel(
      mach,
      reg->SrcRegister.File,
      swizzle,
      &index,
      chan );

   switch (tgsi_util_get_full_src_register_sign_mode( reg, chan_index )) {
   case TGSI_UTIL_SIGN_CLEAR:
      chan->q = micro_abs(chan->q);
      break;

   case TGSI_UTIL_SIGN_SET:
      chan->q = micro_set_sign(chan->q);
      break;

   case TGSI_UTIL_SIGN_TOGGLE:
      chan->q = micro_neg(chan->q);
      break;

   case TGSI_UTIL_SIGN_KEEP:
      break;
   }

   if (reg->SrcRegisterExtMod.Complement) {
      chan->q = si_fs(mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q, chan->q);
   }
}

static void
store_dest(
   struct spu_exec_machine *mach,
   const union spu_exec_channel *chan,
   const struct tgsi_full_dst_register *reg,
   const struct tgsi_full_instruction *inst,
   uint chan_index )
{
   union spu_exec_channel *dst;

   switch( reg->DstRegister.File ) {
   case TGSI_FILE_NULL:
      return;

   case TGSI_FILE_OUTPUT:
      dst = &mach->Outputs[mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
                           + reg->DstRegister.Index].xyzw[chan_index];
      break;

   case TGSI_FILE_TEMPORARY:
      dst = &mach->Temps[reg->DstRegister.Index].xyzw[chan_index];
      break;

   case TGSI_FILE_ADDRESS:
      dst = &mach->Addrs[reg->DstRegister.Index].xyzw[chan_index];
      break;

   default:
      assert( 0 );
      return;
   }

   switch (inst->Instruction.Saturate)
   {
   case TGSI_SAT_NONE:
      if (mach->ExecMask & 0x1)
         dst->i[0] = chan->i[0];
      if (mach->ExecMask & 0x2)
         dst->i[1] = chan->i[1];
      if (mach->ExecMask & 0x4)
         dst->i[2] = chan->i[2];
      if (mach->ExecMask & 0x8)
         dst->i[3] = chan->i[3];
      break;

   case TGSI_SAT_ZERO_ONE:
      /* XXX need to obey ExecMask here */
      dst->q = micro_max(chan->q, mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q);
      dst->q = micro_min(dst->q, mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q);
      break;

   case TGSI_SAT_MINUS_PLUS_ONE:
      assert( 0 );
      break;

   default:
      assert( 0 );
   }
}

#define FETCH(VAL,INDEX,CHAN)\
    fetch_source (mach, VAL, &inst->FullSrcRegisters[INDEX], CHAN)

#define STORE(VAL,INDEX,CHAN)\
    store_dest (mach, VAL, &inst->FullDstRegisters[INDEX], inst, CHAN )


/**
 * Execute ARB-style KIL which is predicated by a src register.
 * Kill fragment if any of the four values is less than zero.
 */
static void
exec_kilp(struct spu_exec_machine *mach,
          const struct tgsi_full_instruction *inst)
{
   uint uniquemask;
   uint chan_index;
   uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
   union spu_exec_channel r[1];

   /* This mask stores component bits that were already tested. Note that
    * we test if the value is less than zero, so 1.0 and 0.0 need not to be
    * tested. */
   uniquemask = (1 << TGSI_EXTSWIZZLE_ZERO) | (1 << TGSI_EXTSWIZZLE_ONE);

   for (chan_index = 0; chan_index < 4; chan_index++)
   {
      uint swizzle;
      uint i;

      /* unswizzle channel */
      swizzle = tgsi_util_get_full_src_register_extswizzle (
                        &inst->FullSrcRegisters[0],
                        chan_index);

      /* check if the component has not been already tested */
      if (uniquemask & (1 << swizzle))
         continue;
      uniquemask |= 1 << swizzle;

      FETCH(&r[0], 0, chan_index);
      for (i = 0; i < 4; i++)
         if (r[0].f[i] < 0.0f)
            kilmask |= 1 << i;
   }

   mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
}


/*
 * Fetch a texel using STR texture coordinates.
 */
static void
fetch_texel( struct spu_sampler *sampler,
             const union spu_exec_channel *s,
             const union spu_exec_channel *t,
             const union spu_exec_channel *p,
             float lodbias,  /* XXX should be float[4] */
             union spu_exec_channel *r,
             union spu_exec_channel *g,
             union spu_exec_channel *b,
             union spu_exec_channel *a )
{
   qword rgba[4];
   qword out[4];

   sampler->get_samples(sampler, s->f, t->f, p->f, lodbias, 
			(float (*)[4]) rgba);

   _transpose_matrix4x4((vec_float4 *) out, (vec_float4 *) rgba);
   r->q = out[0];
   g->q = out[1];
   b->q = out[2];
   a->q = out[3];
}


static void
exec_tex(struct spu_exec_machine *mach,
         const struct tgsi_full_instruction *inst,
         boolean biasLod, boolean projected)
{
   const uint unit = inst->FullSrcRegisters[1].SrcRegister.Index;
   union spu_exec_channel r[8];
   uint chan_index;
   float lodBias;

   /*   printf("Sampler %u unit %u\n", sampler, unit); */

   switch (inst->InstructionExtTexture.Texture) {
   case TGSI_TEXTURE_1D:

      FETCH(&r[0], 0, CHAN_X);

      if (projected) {
         FETCH(&r[1], 0, CHAN_W);
         r[0].q = micro_div(r[0].q, r[1].q);
      }

      if (biasLod) {
         FETCH(&r[1], 0, CHAN_W);
         lodBias = r[2].f[0];
      }
      else
         lodBias = 0.0;

      fetch_texel(&mach->Samplers[unit],
                  &r[0], NULL, NULL, lodBias,  /* S, T, P, BIAS */
                  &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
      break;

   case TGSI_TEXTURE_2D:
   case TGSI_TEXTURE_RECT:

      FETCH(&r[0], 0, CHAN_X);
      FETCH(&r[1], 0, CHAN_Y);
      FETCH(&r[2], 0, CHAN_Z);

      if (projected) {
         FETCH(&r[3], 0, CHAN_W);
         r[0].q = micro_div(r[0].q, r[3].q);
         r[1].q = micro_div(r[1].q, r[3].q);
         r[2].q = micro_div(r[2].q, r[3].q);
      }

      if (biasLod) {
         FETCH(&r[3], 0, CHAN_W);
         lodBias = r[3].f[0];
      }
      else
         lodBias = 0.0;

      fetch_texel(&mach->Samplers[unit],
                  &r[0], &r[1], &r[2], lodBias,  /* inputs */
                  &r[0], &r[1], &r[2], &r[3]);  /* outputs */
      break;

   case TGSI_TEXTURE_3D:
   case TGSI_TEXTURE_CUBE:

      FETCH(&r[0], 0, CHAN_X);
      FETCH(&r[1], 0, CHAN_Y);
      FETCH(&r[2], 0, CHAN_Z);

      if (projected) {
         FETCH(&r[3], 0, CHAN_W);
         r[0].q = micro_div(r[0].q, r[3].q);
         r[1].q = micro_div(r[1].q, r[3].q);
         r[2].q = micro_div(r[2].q, r[3].q);
      }

      if (biasLod) {
         FETCH(&r[3], 0, CHAN_W);
         lodBias = r[3].f[0];
      }
      else
         lodBias = 0.0;

      fetch_texel(&mach->Samplers[unit],
                  &r[0], &r[1], &r[2], lodBias,
                  &r[0], &r[1], &r[2], &r[3]);
      break;

   default:
      assert (0);
   }

   FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
      STORE( &r[chan_index], 0, chan_index );
   }
}



static void
constant_interpolation(
   struct spu_exec_machine *mach,
   unsigned attrib,
   unsigned chan )
{
   unsigned i;

   for( i = 0; i < QUAD_SIZE; i++ ) {
      mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
   }
}

static void
linear_interpolation(
   struct spu_exec_machine *mach,
   unsigned attrib,
   unsigned chan )
{
   const float x = mach->QuadPos.xyzw[0].f[0];
   const float y = mach->QuadPos.xyzw[1].f[0];
   const float dadx = mach->InterpCoefs[attrib].dadx[chan];
   const float dady = mach->InterpCoefs[attrib].dady[chan];
   const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
   mach->Inputs[attrib].xyzw[chan].f[0] = a0;
   mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
   mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
   mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
}

static void
perspective_interpolation(
   struct spu_exec_machine *mach,
   unsigned attrib,
   unsigned chan )
{
   const float x = mach->QuadPos.xyzw[0].f[0];
   const float y = mach->QuadPos.xyzw[1].f[0];
   const float dadx = mach->InterpCoefs[attrib].dadx[chan];
   const float dady = mach->InterpCoefs[attrib].dady[chan];
   const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
   const float *w = mach->QuadPos.xyzw[3].f;
   /* divide by W here */
   mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
   mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
   mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
   mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
}


typedef void (* interpolation_func)(
   struct spu_exec_machine *mach,
   unsigned attrib,
   unsigned chan );

static void
exec_declaration(struct spu_exec_machine *mach,
                 const struct tgsi_full_declaration *decl)
{
   if( mach->Processor == TGSI_PROCESSOR_FRAGMENT ) {
      if( decl->Declaration.File == TGSI_FILE_INPUT ) {
         unsigned first, last, mask;
         interpolation_func interp;

         first = decl->DeclarationRange.First;
         last = decl->DeclarationRange.Last;
         mask = decl->Declaration.UsageMask;

         switch( decl->Declaration.Interpolate ) {
         case TGSI_INTERPOLATE_CONSTANT:
            interp = constant_interpolation;
            break;

         case TGSI_INTERPOLATE_LINEAR:
            interp = linear_interpolation;
            break;

         case TGSI_INTERPOLATE_PERSPECTIVE:
            interp = perspective_interpolation;
            break;

         default:
            assert( 0 );
         }

         if( mask == TGSI_WRITEMASK_XYZW ) {
            unsigned i, j;

            for( i = first; i <= last; i++ ) {
               for( j = 0; j < NUM_CHANNELS; j++ ) {
                  interp( mach, i, j );
               }
            }
         }
         else {
            unsigned i, j;

            for( j = 0; j < NUM_CHANNELS; j++ ) {
               if( mask & (1 << j) ) {
                  for( i = first; i <= last; i++ ) {
                     interp( mach, i, j );
                  }
               }
            }
         }
      }
   }
}

static void
exec_instruction(
   struct spu_exec_machine *mach,
   const struct tgsi_full_instruction *inst,
   int *pc )
{
   uint chan_index;
   union spu_exec_channel r[8];

   (*pc)++;

   switch (inst->Instruction.Opcode) {
   case TGSI_OPCODE_ARL:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
	 FETCH( &r[0], 0, chan_index );
         r[0].q = si_cflts(r[0].q, 0);
	 STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_MOV:
   /* TGSI_OPCODE_SWZ */
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_LIT:
      if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
	 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X );
      }

      if (IS_CHANNEL_ENABLED( *inst, CHAN_Y ) || IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
	 FETCH( &r[0], 0, CHAN_X );
         if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
            r[0].q = micro_max(r[0].q, mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q);
	    STORE( &r[0], 0, CHAN_Y );
	 }

         if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
            FETCH( &r[1], 0, CHAN_Y );
            r[1].q = micro_max(r[1].q, mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q);

            FETCH( &r[2], 0, CHAN_W );
            r[2].q = micro_min(r[2].q, mach->Temps[TEMP_128_I].xyzw[TEMP_128_C].q);
            r[2].q = micro_max(r[2].q, mach->Temps[TEMP_M128_I].xyzw[TEMP_M128_C].q);
            r[1].q = micro_pow(r[1].q, r[2].q);

            /* r0 = (r0 > 0.0) ? r1 : 0.0
             */
            r[0].q = si_fcgt(r[0].q, mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q);
            r[0].q = si_selb(mach->Temps[TEMP_0_I].xyzw[TEMP_0_C].q, r[1].q,
                             r[0].q);
            STORE( &r[0], 0, CHAN_Z );
         }
      }

      if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
	 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
      }
      break;

   case TGSI_OPCODE_RCP:
   /* TGSI_OPCODE_RECIP */
      FETCH( &r[0], 0, CHAN_X );
      r[0].q = micro_div(mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q, r[0].q);
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
	 STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_RSQ:
   /* TGSI_OPCODE_RECIPSQRT */
      FETCH( &r[0], 0, CHAN_X );
      r[0].q = micro_sqrt(r[0].q);
      r[0].q = micro_div(mach->Temps[TEMP_1_I].xyzw[TEMP_1_C].q, r[0].q);
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
	 STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_EXP:
      assert (0);
      break;

   case TGSI_OPCODE_LOG:
      assert (0);
      break;

   case TGSI_OPCODE_MUL:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index )
      {
         FETCH(&r[0], 0, chan_index);
         FETCH(&r[1], 1, chan_index);

         r[0].q = si_fm(r[0].q, r[1].q);

         STORE(&r[0], 0, chan_index);
      }
      break;

   case TGSI_OPCODE_ADD:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );
         r[0].q = si_fa(r[0].q, r[1].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_DP3:
   /* TGSI_OPCODE_DOT3 */
      FETCH( &r[0], 0, CHAN_X );
      FETCH( &r[1], 1, CHAN_X );
      r[0].q = si_fm(r[0].q, r[1].q);

      FETCH( &r[1], 0, CHAN_Y );
      FETCH( &r[2], 1, CHAN_Y );
      r[0].q = si_fma(r[1].q, r[2].q, r[0].q);


      FETCH( &r[1], 0, CHAN_Z );
      FETCH( &r[2], 1, CHAN_Z );
      r[0].q = si_fma(r[1].q, r[2].q, r[0].q);

      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         STORE( &r[0], 0, chan_index );
      }
      break;

    case TGSI_OPCODE_DP4:
    /* TGSI_OPCODE_DOT4 */
       FETCH(&r[0], 0, CHAN_X);
       FETCH(&r[1], 1, CHAN_X);

      r[0].q = si_fm(r[0].q, r[1].q);

       FETCH(&r[1], 0, CHAN_Y);
       FETCH(&r[2], 1, CHAN_Y);

      r[0].q = si_fma(r[1].q, r[2].q, r[0].q);

       FETCH(&r[1], 0, CHAN_Z);
       FETCH(&r[2], 1, CHAN_Z);

      r[0].q = si_fma(r[1].q, r[2].q, r[0].q);

       FETCH(&r[1], 0, CHAN_W);
       FETCH(&r[2], 1, CHAN_W);

      r[0].q = si_fma(r[1].q, r[2].q, r[0].q);

      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
	 STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_DST:
      if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
	 STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_X );
      }

      if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
	 FETCH( &r[0], 0, CHAN_Y );
	 FETCH( &r[1], 1, CHAN_Y);
      r[0].q = si_fm(r[0].q, r[1].q);
	 STORE( &r[0], 0, CHAN_Y );
      }

      if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
	 FETCH( &r[0], 0, CHAN_Z );
	 STORE( &r[0], 0, CHAN_Z );
      }

      if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
	 FETCH( &r[0], 1, CHAN_W );
	 STORE( &r[0], 0, CHAN_W );
      }
      break;

   case TGSI_OPCODE_MIN:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH(&r[0], 0, chan_index);
         FETCH(&r[1], 1, chan_index);

         r[0].q = micro_min(r[0].q, r[1].q);

         STORE(&r[0], 0, chan_index);
      }
      break;

   case TGSI_OPCODE_MAX:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH(&r[0], 0, chan_index);
         FETCH(&r[1], 1, chan_index);

         r[0].q = micro_max(r[0].q, r[1].q);

         STORE(&r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SLT:
   /* TGSI_OPCODE_SETLT */
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );

         r[0].q = micro_ge(r[0].q, r[1].q);
         r[0].q = si_xori(r[0].q, 0xff);

         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SGE:
   /* TGSI_OPCODE_SETGE */
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );
         r[0].q = micro_ge(r[0].q, r[1].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_MAD:
   /* TGSI_OPCODE_MADD */
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );
         FETCH( &r[2], 2, chan_index );
         r[0].q = si_fma(r[0].q, r[1].q, r[2].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SUB:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH(&r[0], 0, chan_index);
         FETCH(&r[1], 1, chan_index);

         r[0].q = si_fs(r[0].q, r[1].q);

         STORE(&r[0], 0, chan_index);
      }
      break;

   case TGSI_OPCODE_LERP:
   /* TGSI_OPCODE_LRP */
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH(&r[0], 0, chan_index);
         FETCH(&r[1], 1, chan_index);
         FETCH(&r[2], 2, chan_index);

         r[1].q = si_fs(r[1].q, r[2].q);
         r[0].q = si_fma(r[0].q, r[1].q, r[2].q);

         STORE(&r[0], 0, chan_index);
      }
      break;

   case TGSI_OPCODE_CND:
      assert (0);
      break;

   case TGSI_OPCODE_CND0:
      assert (0);
      break;

   case TGSI_OPCODE_DOT2ADD:
      /* TGSI_OPCODE_DP2A */
      assert (0);
      break;

   case TGSI_OPCODE_INDEX:
      assert (0);
      break;

   case TGSI_OPCODE_NEGATE:
      assert (0);
      break;

   case TGSI_OPCODE_FRAC:
   /* TGSI_OPCODE_FRC */
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = micro_frc(r[0].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_CLAMP:
      assert (0);
      break;

   case TGSI_OPCODE_FLOOR:
   /* TGSI_OPCODE_FLR */
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = micro_flr(r[0].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_ROUND:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = micro_rnd(r[0].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_EXPBASE2:
    /* TGSI_OPCODE_EX2 */
      FETCH(&r[0], 0, CHAN_X);

      r[0].q = micro_pow(mach->Temps[TEMP_2_I].xyzw[TEMP_2_C].q, r[0].q);

      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
	 STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_LOGBASE2:
   /* TGSI_OPCODE_LG2 */
      FETCH( &r[0], 0, CHAN_X );
      r[0].q = micro_lg2(r[0].q);
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_POWER:
      /* TGSI_OPCODE_POW */
      FETCH(&r[0], 0, CHAN_X);
      FETCH(&r[1], 1, CHAN_X);

      r[0].q = micro_pow(r[0].q, r[1].q);

      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
	 STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_CROSSPRODUCT:
      /* TGSI_OPCODE_XPD */
      FETCH(&r[0], 0, CHAN_Y);
      FETCH(&r[1], 1, CHAN_Z);
      FETCH(&r[3], 0, CHAN_Z);
      FETCH(&r[4], 1, CHAN_Y);

      /* r2 = (r0 * r1) - (r3 * r5)
       */
      r[2].q = si_fm(r[3].q, r[5].q);
      r[2].q = si_fms(r[0].q, r[1].q, r[2].q);

      if (IS_CHANNEL_ENABLED( *inst, CHAN_X )) {
         STORE( &r[2], 0, CHAN_X );
      }

      FETCH(&r[2], 1, CHAN_X);
      FETCH(&r[5], 0, CHAN_X);

      /* r3 = (r3 * r2) - (r1 * r5)
       */
      r[1].q = si_fm(r[1].q, r[5].q);
      r[3].q = si_fms(r[3].q, r[2].q, r[1].q);

      if (IS_CHANNEL_ENABLED( *inst, CHAN_Y )) {
         STORE( &r[3], 0, CHAN_Y );
      }

      /* r5 = (r5 * r4) - (r0 * r2)
       */
      r[0].q = si_fm(r[0].q, r[2].q);
      r[5].q = si_fms(r[5].q, r[4].q, r[0].q);

      if (IS_CHANNEL_ENABLED( *inst, CHAN_Z )) {
         STORE( &r[5], 0, CHAN_Z );
      }

      if (IS_CHANNEL_ENABLED( *inst, CHAN_W )) {
         STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
      }
      break;

    case TGSI_OPCODE_MULTIPLYMATRIX:
       assert (0);
       break;

    case TGSI_OPCODE_ABS:
       FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
          FETCH(&r[0], 0, chan_index);

          r[0].q = micro_abs(r[0].q);

          STORE(&r[0], 0, chan_index);
       }
       break;

   case TGSI_OPCODE_RCC:
      assert (0);
      break;

   case TGSI_OPCODE_DPH:
      FETCH(&r[0], 0, CHAN_X);
      FETCH(&r[1], 1, CHAN_X);

      r[0].q = si_fm(r[0].q, r[1].q);

      FETCH(&r[1], 0, CHAN_Y);
      FETCH(&r[2], 1, CHAN_Y);

      r[0].q = si_fma(r[1].q, r[2].q, r[0].q);

      FETCH(&r[1], 0, CHAN_Z);
      FETCH(&r[2], 1, CHAN_Z);

      r[0].q = si_fma(r[1].q, r[2].q, r[0].q);

      FETCH(&r[1], 1, CHAN_W);

      r[0].q = si_fa(r[0].q, r[1].q);

      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
	 STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_COS:
      FETCH(&r[0], 0, CHAN_X);

      r[0].q = micro_cos(r[0].q);

      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
	 STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_DDX:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = micro_ddx(r[0].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_DDY:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = micro_ddy(r[0].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_KILP:
      exec_kilp (mach, inst);
      break;

   case TGSI_OPCODE_KIL:
      /* for enabled ExecMask bits, set the killed bit */
      mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= mach->ExecMask;
      break;

   case TGSI_OPCODE_PK2H:
      assert (0);
      break;

   case TGSI_OPCODE_PK2US:
      assert (0);
      break;

   case TGSI_OPCODE_PK4B:
      assert (0);
      break;

   case TGSI_OPCODE_PK4UB:
      assert (0);
      break;

   case TGSI_OPCODE_RFL:
      assert (0);
      break;

   case TGSI_OPCODE_SEQ:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );

         r[0].q = si_fceq(r[0].q, r[1].q);

         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SFL:
      assert (0);
      break;

   case TGSI_OPCODE_SGT:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );
         r[0].q = si_fcgt(r[0].q, r[1].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SIN:
      FETCH( &r[0], 0, CHAN_X );
      r[0].q = micro_sin(r[0].q);
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SLE:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );

         r[0].q = si_fcgt(r[0].q, r[1].q);
         r[0].q = si_xori(r[0].q, 0xff);

         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SNE:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );

         r[0].q = si_fceq(r[0].q, r[1].q);
         r[0].q = si_xori(r[0].q, 0xff);

         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_STR:
      assert (0);
      break;

   case TGSI_OPCODE_TEX:
      /* simple texture lookup */
      /* src[0] = texcoord */
      /* src[1] = sampler unit */
      exec_tex(mach, inst, FALSE, FALSE);
      break;

   case TGSI_OPCODE_TXB:
      /* Texture lookup with lod bias */
      /* src[0] = texcoord (src[0].w = load bias) */
      /* src[1] = sampler unit */
      exec_tex(mach, inst, TRUE, FALSE);
      break;

   case TGSI_OPCODE_TXD:
      /* Texture lookup with explict partial derivatives */
      /* src[0] = texcoord */
      /* src[1] = d[strq]/dx */
      /* src[2] = d[strq]/dy */
      /* src[3] = sampler unit */
      assert (0);
      break;

   case TGSI_OPCODE_TXL:
      /* Texture lookup with explit LOD */
      /* src[0] = texcoord (src[0].w = load bias) */
      /* src[1] = sampler unit */
      exec_tex(mach, inst, TRUE, FALSE);
      break;

   case TGSI_OPCODE_TXP:
      /* Texture lookup with projection */
      /* src[0] = texcoord (src[0].w = projection) */
      /* src[1] = sampler unit */
      exec_tex(mach, inst, TRUE, TRUE);
      break;

   case TGSI_OPCODE_UP2H:
      assert (0);
      break;

   case TGSI_OPCODE_UP2US:
      assert (0);
      break;

   case TGSI_OPCODE_UP4B:
      assert (0);
      break;

   case TGSI_OPCODE_UP4UB:
      assert (0);
      break;

   case TGSI_OPCODE_X2D:
      assert (0);
      break;

   case TGSI_OPCODE_ARA:
      assert (0);
      break;

   case TGSI_OPCODE_ARR:
      assert (0);
      break;

   case TGSI_OPCODE_BRA:
      assert (0);
      break;

   case TGSI_OPCODE_CAL:
      /* skip the call if no execution channels are enabled */
      if (mach->ExecMask) {
         /* do the call */

         /* push the Cond, Loop, Cont stacks */
         assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
         mach->CondStack[mach->CondStackTop++] = mach->CondMask;
         assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
         mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
         assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
         mach->ContStack[mach->ContStackTop++] = mach->ContMask;

         assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
         mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;

         /* note that PC was already incremented above */
         mach->CallStack[mach->CallStackTop++] = *pc;
         *pc = inst->InstructionExtLabel.Label;
      }
      break;

   case TGSI_OPCODE_RET:
      mach->FuncMask &= ~mach->ExecMask;
      UPDATE_EXEC_MASK(mach);

      if (mach->ExecMask == 0x0) {
         /* really return now (otherwise, keep executing */

         if (mach->CallStackTop == 0) {
            /* returning from main() */
            *pc = -1;
            return;
         }
         *pc = mach->CallStack[--mach->CallStackTop];

         /* pop the Cond, Loop, Cont stacks */
         assert(mach->CondStackTop > 0);
         mach->CondMask = mach->CondStack[--mach->CondStackTop];
         assert(mach->LoopStackTop > 0);
         mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
         assert(mach->ContStackTop > 0);
         mach->ContMask = mach->ContStack[--mach->ContStackTop];
         assert(mach->FuncStackTop > 0);
         mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];

         UPDATE_EXEC_MASK(mach);
      }
      break;

   case TGSI_OPCODE_SSG:
      assert (0);
      break;

   case TGSI_OPCODE_CMP:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH(&r[0], 0, chan_index);
         FETCH(&r[1], 1, chan_index);
         FETCH(&r[2], 2, chan_index);

         /* r0 = (r0 < 0.0) ? r1 : r2
          */
         r[3].q = si_xor(r[3].q, r[3].q);
         r[0].q = micro_lt(r[0].q, r[3].q);
         r[0].q = si_selb(r[1].q, r[2].q, r[0].q);

         STORE(&r[0], 0, chan_index);
      }
      break;

   case TGSI_OPCODE_SCS:
      if( IS_CHANNEL_ENABLED( *inst, CHAN_X ) || IS_CHANNEL_ENABLED( *inst, CHAN_Y ) ) {
         FETCH( &r[0], 0, CHAN_X );
      }
      if( IS_CHANNEL_ENABLED( *inst, CHAN_X ) ) {
         r[1].q = micro_cos(r[0].q);
         STORE( &r[1], 0, CHAN_X );
      }
      if( IS_CHANNEL_ENABLED( *inst, CHAN_Y ) ) {
         r[1].q = micro_sin(r[0].q);
         STORE( &r[1], 0, CHAN_Y );
      }
      if( IS_CHANNEL_ENABLED( *inst, CHAN_Z ) ) {
         STORE( &mach->Temps[TEMP_0_I].xyzw[TEMP_0_C], 0, CHAN_Z );
      }
      if( IS_CHANNEL_ENABLED( *inst, CHAN_W ) ) {
         STORE( &mach->Temps[TEMP_1_I].xyzw[TEMP_1_C], 0, CHAN_W );
      }
      break;

   case TGSI_OPCODE_NRM:
      assert (0);
      break;

   case TGSI_OPCODE_DIV:
      assert( 0 );
      break;

   case TGSI_OPCODE_DP2:
      FETCH( &r[0], 0, CHAN_X );
      FETCH( &r[1], 1, CHAN_X );
      r[0].q = si_fm(r[0].q, r[1].q);

      FETCH( &r[1], 0, CHAN_Y );
      FETCH( &r[2], 1, CHAN_Y );
      r[0].q = si_fma(r[1].q, r[2].q, r[0].q);

      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_IF:
      /* push CondMask */
      assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
      mach->CondStack[mach->CondStackTop++] = mach->CondMask;
      FETCH( &r[0], 0, CHAN_X );
      /* update CondMask */
      if( ! r[0].u[0] ) {
         mach->CondMask &= ~0x1;
      }
      if( ! r[0].u[1] ) {
         mach->CondMask &= ~0x2;
      }
      if( ! r[0].u[2] ) {
         mach->CondMask &= ~0x4;
      }
      if( ! r[0].u[3] ) {
         mach->CondMask &= ~0x8;
      }
      UPDATE_EXEC_MASK(mach);
      /* Todo: If CondMask==0, jump to ELSE */
      break;

   case TGSI_OPCODE_ELSE:
      /* invert CondMask wrt previous mask */
      {
         uint prevMask;
         assert(mach->CondStackTop > 0);
         prevMask = mach->CondStack[mach->CondStackTop - 1];
         mach->CondMask = ~mach->CondMask & prevMask;
         UPDATE_EXEC_MASK(mach);
         /* Todo: If CondMask==0, jump to ENDIF */
      }
      break;

   case TGSI_OPCODE_ENDIF:
      /* pop CondMask */
      assert(mach->CondStackTop > 0);
      mach->CondMask = mach->CondStack[--mach->CondStackTop];
      UPDATE_EXEC_MASK(mach);
      break;

   case TGSI_OPCODE_END:
      /* halt execution */
      *pc = -1;
      break;

   case TGSI_OPCODE_REP:
      assert (0);
      break;

   case TGSI_OPCODE_ENDREP:
       assert (0);
       break;

   case TGSI_OPCODE_PUSHA:
      assert (0);
      break;

   case TGSI_OPCODE_POPA:
      assert (0);
      break;

   case TGSI_OPCODE_CEIL:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = micro_ceil(r[0].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_I2F:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = si_csflt(r[0].q, 0);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_NOT:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = si_xorbi(r[0].q, 0xff);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_TRUNC:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         r[0].q = micro_trunc(r[0].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SHL:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );

         r[0].q = si_shl(r[0].q, r[1].q);

         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SHR:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );
         r[0].q = micro_ishr(r[0].q, r[1].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_AND:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );
         r[0].q = si_and(r[0].q, r[1].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_OR:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );
         r[0].q = si_or(r[0].q, r[1].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_MOD:
      assert (0);
      break;

   case TGSI_OPCODE_XOR:
      FOR_EACH_ENABLED_CHANNEL( *inst, chan_index ) {
         FETCH( &r[0], 0, chan_index );
         FETCH( &r[1], 1, chan_index );
         r[0].q = si_xor(r[0].q, r[1].q);
         STORE( &r[0], 0, chan_index );
      }
      break;

   case TGSI_OPCODE_SAD:
      assert (0);
      break;

   case TGSI_OPCODE_TXF:
      assert (0);
      break;

   case TGSI_OPCODE_TXQ:
      assert (0);
      break;

   case TGSI_OPCODE_EMIT:
      mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += 16;
      mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
      break;

   case TGSI_OPCODE_ENDPRIM:
      mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]++;
      mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] = 0;
      break;

   case TGSI_OPCODE_LOOP:
      /* fall-through (for now) */
   case TGSI_OPCODE_BGNLOOP2:
      /* push LoopMask and ContMasks */
      assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
      mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
      assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
      mach->ContStack[mach->ContStackTop++] = mach->ContMask;
      break;

   case TGSI_OPCODE_ENDLOOP:
      /* fall-through (for now at least) */
   case TGSI_OPCODE_ENDLOOP2:
      /* Restore ContMask, but don't pop */
      assert(mach->ContStackTop > 0);
      mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
      if (mach->LoopMask) {
         /* repeat loop: jump to instruction just past BGNLOOP */
         *pc = inst->InstructionExtLabel.Label + 1;
      }
      else {
         /* exit loop: pop LoopMask */
         assert(mach->LoopStackTop > 0);
         mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
         /* pop ContMask */
         assert(mach->ContStackTop > 0);
         mach->ContMask = mach->ContStack[--mach->ContStackTop];
      }
      UPDATE_EXEC_MASK(mach);
      break;

   case TGSI_OPCODE_BRK:
      /* turn off loop channels for each enabled exec channel */
      mach->LoopMask &= ~mach->ExecMask;
      /* Todo: if mach->LoopMask == 0, jump to end of loop */
      UPDATE_EXEC_MASK(mach);
      break;

   case TGSI_OPCODE_CONT:
      /* turn off cont channels for each enabled exec channel */
      mach->ContMask &= ~mach->ExecMask;
      /* Todo: if mach->LoopMask == 0, jump to end of loop */
      UPDATE_EXEC_MASK(mach);
      break;

   case TGSI_OPCODE_BGNSUB:
      /* no-op */
      break;

   case TGSI_OPCODE_ENDSUB:
      /* no-op */
      break;

   case TGSI_OPCODE_NOISE1:
      assert( 0 );
      break;

   case TGSI_OPCODE_NOISE2:
      assert( 0 );
      break;

   case TGSI_OPCODE_NOISE3:
      assert( 0 );
      break;

   case TGSI_OPCODE_NOISE4:
      assert( 0 );
      break;

   case TGSI_OPCODE_NOP:
      break;

   default:
      assert( 0 );
   }
}


/**
 * Run TGSI interpreter.
 * \return bitmask of "alive" quad components
 */
uint
spu_exec_machine_run( struct spu_exec_machine *mach )
{
   uint i;
   int pc = 0;

   mach->CondMask = 0xf;
   mach->LoopMask = 0xf;
   mach->ContMask = 0xf;
   mach->FuncMask = 0xf;
   mach->ExecMask = 0xf;

   mach->CondStackTop = 0; /* temporarily subvert this assertion */
   assert(mach->CondStackTop == 0);
   assert(mach->LoopStackTop == 0);
   assert(mach->ContStackTop == 0);
   assert(mach->CallStackTop == 0);

   mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
   mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;

   if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
      mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
      mach->Primitives[0] = 0;
   }


   /* execute declarations (interpolants) */
   if( mach->Processor == TGSI_PROCESSOR_FRAGMENT ) {
      for (i = 0; i < mach->NumDeclarations; i++) {
         union {
            struct tgsi_full_declaration decl;
            qword buffer[ROUNDUP16(sizeof(struct tgsi_full_declaration)) / 16];
         } d ALIGN16_ATTRIB;
         unsigned ea = (unsigned) (mach->Declarations + pc);

         spu_dcache_fetch_unaligned(d.buffer, ea, sizeof(d.decl));

         exec_declaration( mach, &d.decl );
      }
   }

   /* execute instructions, until pc is set to -1 */
   while (pc != -1) {
      union {
         struct tgsi_full_instruction inst;
         qword buffer[ROUNDUP16(sizeof(struct tgsi_full_instruction)) / 16];
      } i ALIGN16_ATTRIB;
      unsigned ea = (unsigned) (mach->Instructions + pc);

      spu_dcache_fetch_unaligned(i.buffer, ea, sizeof(i.inst));
      exec_instruction( mach, & i.inst, &pc );
   }

#if 0
   /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
   if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
      /*
       * Scale back depth component.
       */
      for (i = 0; i < 4; i++)
         mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
   }
#endif

   return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
}