1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper
*
* LLVM IR doesn't support all basic arithmetic operations we care about (most
* notably min/max and saturated operations), and it is often necessary to
* resort machine-specific intrinsics directly. The functions here hide all
* these implementation details from the other modules.
*
* We also do simple expressions simplification here. Reasons are:
* - it is very easy given we have all necessary information readily available
* - LLVM optimization passes fail to simplify several vector expressions
* - We often know value constraints which the optimization passes have no way
* of knowing, such as when source arguments are known to be in [0, 1] range.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_debug.h"
#include "lp_bld_intr.h"
LLVMValueRef
lp_build_intrinsic_binary(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder)));
LLVMValueRef function;
LLVMValueRef args[2];
function = LLVMGetNamedFunction(module, name);
if(!function) {
LLVMTypeRef arg_types[2];
arg_types[0] = LLVMTypeOf(a);
arg_types[1] = LLVMTypeOf(b);
function = LLVMAddFunction(module, name, LLVMFunctionType(ret_type, arg_types, 2, 0));
LLVMSetFunctionCallConv(function, LLVMCCallConv);
LLVMSetLinkage(function, LLVMExternalLinkage);
}
assert(LLVMIsDeclaration(function));
#ifdef DEBUG
/* We shouldn't use only constants with intrinsics, as they won't be
* propagated by LLVM optimization passes.
*/
if(LLVMIsConstant(a) && LLVMIsConstant(b))
debug_printf("warning: invoking intrinsic \"%s\" with constants\n");
#endif
args[0] = a;
args[1] = b;
return LLVMBuildCall(builder, function, args, 2, "");
}
|