1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Binning code for triangles
*/
#include "lp_setup_context.h"
#include "lp_rast.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#define NUM_CHANNELS 4
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
*/
static void constant_coef( struct lp_rast_triangle *tri,
unsigned slot,
const float value,
unsigned i )
{
tri->inputs.a0[slot][i] = value;
tri->inputs.dadx[slot][i] = 0;
tri->inputs.dady[slot][i] = 0;
}
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a triangle.
*/
static void linear_coef( struct lp_rast_triangle *tri,
float oneoverarea,
unsigned slot,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4],
unsigned vert_attr,
unsigned i)
{
float a1 = v1[vert_attr][i];
float a2 = v2[vert_attr][i];
float a3 = v3[vert_attr][i];
float da12 = a1 - a2;
float da31 = a3 - a1;
float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
tri->inputs.dadx[slot][i] = dadx;
tri->inputs.dady[slot][i] = dady;
/* calculate a0 as the value which would be sampled for the
* fragment at (0,0), taking into account that we want to sample at
* pixel centers, in other words (0.5, 0.5).
*
* this is neat but unfortunately not a good way to do things for
* triangles with very large values of dadx or dady as it will
* result in the subtraction and re-addition from a0 of a very
* large number, which means we'll end up loosing a lot of the
* fractional bits and precision from a0. the way to fix this is
* to define a0 as the sample at a pixel center somewhere near vmin
* instead - i'll switch to this later.
*/
tri->inputs.a0[slot][i] = (v1[vert_attr][i] -
(dadx * (v1[0][0] - 0.5f) +
dady * (v1[0][1] - 0.5f)));
}
/**
* Compute a0, dadx and dady for a perspective-corrected interpolant,
* for a triangle.
* We basically multiply the vertex value by 1/w before computing
* the plane coefficients (a0, dadx, dady).
* Later, when we compute the value at a particular fragment position we'll
* divide the interpolated value by the interpolated W at that fragment.
*/
static void perspective_coef( struct lp_rast_triangle *tri,
float oneoverarea,
unsigned slot,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4],
unsigned vert_attr,
unsigned i)
{
/* premultiply by 1/w (v[0][3] is always 1/w):
*/
float a1 = v1[vert_attr][i] * v1[0][3];
float a2 = v2[vert_attr][i] * v2[0][3];
float a3 = v3[vert_attr][i] * v3[0][3];
float da12 = a1 - a2;
float da31 = a3 - a1;
float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
tri->inputs.dadx[slot][i] = dadx;
tri->inputs.dady[slot][i] = dady;
tri->inputs.a0[slot][i] = (a1 -
(dadx * (v1[0][0] - 0.5f) +
dady * (v1[0][1] - 0.5f)));
}
/**
* Special coefficient setup for gl_FragCoord.
* X and Y are trivial, though Y has to be inverted for OpenGL.
* Z and W are copied from position_coef which should have already been computed.
* We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
*/
static void
setup_fragcoord_coef(struct lp_rast_triangle *tri,
float oneoverarea,
unsigned slot,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4])
{
/*X*/
tri->inputs.a0[slot][0] = 0.0;
tri->inputs.dadx[slot][0] = 1.0;
tri->inputs.dady[slot][0] = 0.0;
/*Y*/
tri->inputs.a0[slot][1] = 0.0;
tri->inputs.dadx[slot][1] = 0.0;
tri->inputs.dady[slot][1] = 1.0;
/*Z*/
linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 2);
/*W*/
linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 3);
}
static void setup_facing_coef( struct lp_rast_triangle *tri,
unsigned slot,
boolean frontface )
{
constant_coef( tri, slot, 1.0f - frontface, 0 );
constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
}
/**
* Compute the tri->coef[] array dadx, dady, a0 values.
*/
static void setup_tri_coefficients( struct setup_context *setup,
struct lp_rast_triangle *tri,
float oneoverarea,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4],
boolean frontface)
{
struct lp_bins *bins = lp_setup_get_current_bins(setup);
unsigned slot;
/* Allocate space for the a0, dadx and dady arrays
*/
{
unsigned bytes;
bytes = (setup->fs.nr_inputs + 1) * 4 * sizeof(float);
tri->inputs.a0 = lp_bin_alloc_aligned( bins, bytes, 16 );
tri->inputs.dadx = lp_bin_alloc_aligned( bins, bytes, 16 );
tri->inputs.dady = lp_bin_alloc_aligned( bins, bytes, 16 );
}
/* The internal position input is in slot zero:
*/
setup_fragcoord_coef(tri, oneoverarea, 0, v1, v2, v3);
/* setup interpolation for all the remaining attributes:
*/
for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
unsigned vert_attr = setup->fs.input[slot].src_index;
unsigned i;
switch (setup->fs.input[slot].interp) {
case LP_INTERP_CONSTANT:
for (i = 0; i < NUM_CHANNELS; i++)
constant_coef(tri, slot+1, v3[vert_attr][i], i);
break;
case LP_INTERP_LINEAR:
for (i = 0; i < NUM_CHANNELS; i++)
linear_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
break;
case LP_INTERP_PERSPECTIVE:
for (i = 0; i < NUM_CHANNELS; i++)
perspective_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
break;
case LP_INTERP_POSITION:
/* XXX: fix me - duplicates the values in slot zero.
*/
setup_fragcoord_coef(tri, oneoverarea, slot+1, v1, v2, v3);
break;
case LP_INTERP_FACING:
setup_facing_coef(tri, slot+1, frontface);
break;
default:
assert(0);
}
}
}
static inline int subpixel_snap( float a )
{
return util_iround(FIXED_ONE * a);
}
#define MIN3(a,b,c) MIN2(MIN2(a,b),c)
#define MAX3(a,b,c) MAX2(MAX2(a,b),c)
/**
* Do basic setup for triangle rasterization and determine which
* framebuffer tiles are touched. Put the triangle in the bins for the
* tiles which we overlap.
*/
static void
do_triangle_ccw(struct setup_context *setup,
const float (*v1)[4],
const float (*v2)[4],
const float (*v3)[4],
boolean frontfacing )
{
/* x/y positions in fixed point */
const int x1 = subpixel_snap(v1[0][0]);
const int x2 = subpixel_snap(v2[0][0]);
const int x3 = subpixel_snap(v3[0][0]);
const int y1 = subpixel_snap(v1[0][1]);
const int y2 = subpixel_snap(v2[0][1]);
const int y3 = subpixel_snap(v3[0][1]);
struct lp_bins *bins = lp_setup_get_current_bins(setup);
struct lp_rast_triangle *tri = lp_bin_alloc( bins, sizeof *tri );
float area, oneoverarea;
int minx, maxx, miny, maxy;
tri->dx12 = x1 - x2;
tri->dx23 = x2 - x3;
tri->dx31 = x3 - x1;
tri->dy12 = y1 - y2;
tri->dy23 = y2 - y3;
tri->dy31 = y3 - y1;
area = (tri->dx12 * tri->dy31 -
tri->dx31 * tri->dy12);
/* Cull non-ccw and zero-sized triangles.
*
* XXX: subject to overflow??
*/
if (area <= 0) {
lp_bin_putback_data( bins, sizeof *tri );
return;
}
/* Bounding rectangle (in pixels) */
tri->minx = (MIN3(x1, x2, x3) + 0xf) >> FIXED_ORDER;
tri->maxx = (MAX3(x1, x2, x3) + 0xf) >> FIXED_ORDER;
tri->miny = (MIN3(y1, y2, y3) + 0xf) >> FIXED_ORDER;
tri->maxy = (MAX3(y1, y2, y3) + 0xf) >> FIXED_ORDER;
if (tri->miny == tri->maxy ||
tri->minx == tri->maxx) {
lp_bin_putback_data( bins, sizeof *tri );
return;
}
/*
*/
oneoverarea = ((float)FIXED_ONE) / (float)area;
/* Setup parameter interpolants:
*/
setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
/* half-edge constants, will be interated over the whole
* rendertarget.
*/
tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
/* correct for top-left fill convention:
*/
if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
tri->dy12 *= FIXED_ONE;
tri->dy23 *= FIXED_ONE;
tri->dy31 *= FIXED_ONE;
tri->dx12 *= FIXED_ONE;
tri->dx23 *= FIXED_ONE;
tri->dx31 *= FIXED_ONE;
/* find trivial reject offsets for each edge for a single-pixel
* sized block. These will be scaled up at each recursive level to
* match the active blocksize. Scaling in this way works best if
* the blocks are square.
*/
tri->eo1 = 0;
if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
if (tri->dx12 > 0) tri->eo1 += tri->dx12;
tri->eo2 = 0;
if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
if (tri->dx23 > 0) tri->eo2 += tri->dx23;
tri->eo3 = 0;
if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
if (tri->dx31 > 0) tri->eo3 += tri->dx31;
/* Calculate trivial accept offsets from the above.
*/
tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
{
int xstep1 = -tri->dy12;
int xstep2 = -tri->dy23;
int xstep3 = -tri->dy31;
int ystep1 = tri->dx12;
int ystep2 = tri->dx23;
int ystep3 = tri->dx31;
int ix, iy;
int i = 0;
int c1 = 0;
int c2 = 0;
int c3 = 0;
for (iy = 0; iy < 4; iy++) {
int cx1 = c1;
int cx2 = c2;
int cx3 = c3;
for (ix = 0; ix < 4; ix++, i++) {
tri->step[0][i] = cx1;
tri->step[1][i] = cx2;
tri->step[2][i] = cx3;
cx1 += xstep1;
cx2 += xstep2;
cx3 += xstep3;
}
c1 += ystep1;
c2 += ystep2;
c3 += ystep3;
}
}
/*
* All fields of 'tri' are now set. The remaining code here is
* concerned with binning.
*/
/* Convert to tile coordinates:
*/
minx = tri->minx / TILE_SIZE;
miny = tri->miny / TILE_SIZE;
maxx = tri->maxx / TILE_SIZE;
maxy = tri->maxy / TILE_SIZE;
/* Determine which tile(s) intersect the triangle's bounding box
*/
if (miny == maxy && minx == maxx)
{
/* Triangle is contained in a single tile:
*/
lp_bin_command( bins, minx, miny, lp_rast_triangle,
lp_rast_arg_triangle(tri) );
}
else
{
int c1 = (tri->c1 +
tri->dx12 * miny * TILE_SIZE -
tri->dy12 * minx * TILE_SIZE);
int c2 = (tri->c2 +
tri->dx23 * miny * TILE_SIZE -
tri->dy23 * minx * TILE_SIZE);
int c3 = (tri->c3 +
tri->dx31 * miny * TILE_SIZE -
tri->dy31 * minx * TILE_SIZE);
int ei1 = tri->ei1 << TILE_ORDER;
int ei2 = tri->ei2 << TILE_ORDER;
int ei3 = tri->ei3 << TILE_ORDER;
int eo1 = tri->eo1 << TILE_ORDER;
int eo2 = tri->eo2 << TILE_ORDER;
int eo3 = tri->eo3 << TILE_ORDER;
int xstep1 = -(tri->dy12 << TILE_ORDER);
int xstep2 = -(tri->dy23 << TILE_ORDER);
int xstep3 = -(tri->dy31 << TILE_ORDER);
int ystep1 = tri->dx12 << TILE_ORDER;
int ystep2 = tri->dx23 << TILE_ORDER;
int ystep3 = tri->dx31 << TILE_ORDER;
int x, y;
/* Trivially accept or reject blocks, else jump to per-pixel
* examination above.
*/
for (y = miny; y <= maxy; y++)
{
int cx1 = c1;
int cx2 = c2;
int cx3 = c3;
int in = 0;
for (x = minx; x <= maxx; x++)
{
if (cx1 + eo1 < 0 ||
cx2 + eo2 < 0 ||
cx3 + eo3 < 0)
{
/* do nothing */
if (in)
break;
}
else if (cx1 + ei1 > 0 &&
cx2 + ei2 > 0 &&
cx3 + ei3 > 0)
{
in = 1;
/* triangle covers the whole tile- shade whole tile */
lp_bin_command( bins, x, y,
lp_rast_shade_tile,
lp_rast_arg_inputs(&tri->inputs) );
}
else
{
in = 1;
/* shade partial tile */
lp_bin_command( bins, x, y,
lp_rast_triangle,
lp_rast_arg_triangle(tri) );
}
/* Iterate cx values across the region:
*/
cx1 += xstep1;
cx2 += xstep2;
cx3 += xstep3;
}
/* Iterate c values down the region:
*/
c1 += ystep1;
c2 += ystep2;
c3 += ystep3;
}
}
}
static void triangle_cw( struct setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
}
static void triangle_ccw( struct setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
}
static void triangle_both( struct setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
/* edge vectors e = v0 - v2, f = v1 - v2 */
const float ex = v0[0][0] - v2[0][0];
const float ey = v0[0][1] - v2[0][1];
const float fx = v1[0][0] - v2[0][0];
const float fy = v1[0][1] - v2[0][1];
/* det = cross(e,f).z */
if (ex * fy - ey * fx < 0)
triangle_ccw( setup, v0, v1, v2 );
else
triangle_cw( setup, v0, v1, v2 );
}
static void triangle_nop( struct setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
}
void
lp_setup_choose_triangle( struct setup_context *setup )
{
switch (setup->cullmode) {
case PIPE_WINDING_NONE:
setup->triangle = triangle_both;
break;
case PIPE_WINDING_CCW:
setup->triangle = triangle_cw;
break;
case PIPE_WINDING_CW:
setup->triangle = triangle_ccw;
break;
default:
setup->triangle = triangle_nop;
break;
}
}
|