1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
|
/*
* Copyright 2009 Nicolai Hähnle <nhaehnle@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE. */
#include "radeon_compiler.h"
#include "../r300_reg.h"
#include "radeon_nqssadce.h"
#include "radeon_program.h"
#include "radeon_program_alu.h"
#include "shader/prog_print.h"
/*
* Take an already-setup and valid source then swizzle it appropriately to
* obtain a constant ZERO or ONE source.
*/
#define __CONST(x, y) \
(PVS_SRC_OPERAND(t_src_index(vp, &vpi->SrcReg[x]), \
t_swizzle(y), \
t_swizzle(y), \
t_swizzle(y), \
t_swizzle(y), \
t_src_class(vpi->SrcReg[x].File), \
NEGATE_NONE) | (vpi->SrcReg[x].RelAddr << 4))
static unsigned long t_dst_mask(GLuint mask)
{
/* WRITEMASK_* is equivalent to VSF_FLAG_* */
return mask & WRITEMASK_XYZW;
}
static unsigned long t_dst_class(gl_register_file file)
{
switch (file) {
case PROGRAM_TEMPORARY:
return PVS_DST_REG_TEMPORARY;
case PROGRAM_OUTPUT:
return PVS_DST_REG_OUT;
case PROGRAM_ADDRESS:
return PVS_DST_REG_A0;
/*
case PROGRAM_INPUT:
case PROGRAM_LOCAL_PARAM:
case PROGRAM_ENV_PARAM:
case PROGRAM_NAMED_PARAM:
case PROGRAM_STATE_VAR:
case PROGRAM_WRITE_ONLY:
case PROGRAM_ADDRESS:
*/
default:
fprintf(stderr, "problem in %s", __FUNCTION__);
_mesa_exit(-1);
return -1;
}
}
static unsigned long t_dst_index(struct r300_vertex_program_code *vp,
struct prog_dst_register *dst)
{
if (dst->File == PROGRAM_OUTPUT)
return vp->outputs[dst->Index];
return dst->Index;
}
static unsigned long t_src_class(gl_register_file file)
{
switch (file) {
case PROGRAM_TEMPORARY:
return PVS_SRC_REG_TEMPORARY;
case PROGRAM_INPUT:
return PVS_SRC_REG_INPUT;
case PROGRAM_LOCAL_PARAM:
case PROGRAM_ENV_PARAM:
case PROGRAM_NAMED_PARAM:
case PROGRAM_CONSTANT:
case PROGRAM_STATE_VAR:
return PVS_SRC_REG_CONSTANT;
/*
case PROGRAM_OUTPUT:
case PROGRAM_WRITE_ONLY:
case PROGRAM_ADDRESS:
*/
default:
fprintf(stderr, "problem in %s", __FUNCTION__);
_mesa_exit(-1);
return -1;
}
}
static GLboolean t_src_conflict(struct prog_src_register a, struct prog_src_register b)
{
unsigned long aclass = t_src_class(a.File);
unsigned long bclass = t_src_class(b.File);
if (aclass != bclass)
return GL_FALSE;
if (aclass == PVS_SRC_REG_TEMPORARY)
return GL_FALSE;
if (a.RelAddr || b.RelAddr)
return GL_TRUE;
if (a.Index != b.Index)
return GL_TRUE;
return GL_FALSE;
}
static INLINE unsigned long t_swizzle(GLubyte swizzle)
{
/* this is in fact a NOP as the Mesa SWIZZLE_* are all identical to VSF_IN_COMPONENT_* */
return swizzle;
}
static unsigned long t_src_index(struct r300_vertex_program_code *vp,
struct prog_src_register *src)
{
if (src->File == PROGRAM_INPUT) {
assert(vp->inputs[src->Index] != -1);
return vp->inputs[src->Index];
} else {
if (src->Index < 0) {
fprintf(stderr,
"negative offsets for indirect addressing do not work.\n");
return 0;
}
return src->Index;
}
}
/* these two functions should probably be merged... */
static unsigned long t_src(struct r300_vertex_program_code *vp,
struct prog_src_register *src)
{
/* src->Negate uses the NEGATE_ flags from program_instruction.h,
* which equal our VSF_FLAGS_ values, so it's safe to just pass it here.
*/
return PVS_SRC_OPERAND(t_src_index(vp, src),
t_swizzle(GET_SWZ(src->Swizzle, 0)),
t_swizzle(GET_SWZ(src->Swizzle, 1)),
t_swizzle(GET_SWZ(src->Swizzle, 2)),
t_swizzle(GET_SWZ(src->Swizzle, 3)),
t_src_class(src->File),
src->Negate) | (src->RelAddr << 4);
}
static unsigned long t_src_scalar(struct r300_vertex_program_code *vp,
struct prog_src_register *src)
{
/* src->Negate uses the NEGATE_ flags from program_instruction.h,
* which equal our VSF_FLAGS_ values, so it's safe to just pass it here.
*/
return PVS_SRC_OPERAND(t_src_index(vp, src),
t_swizzle(GET_SWZ(src->Swizzle, 0)),
t_swizzle(GET_SWZ(src->Swizzle, 0)),
t_swizzle(GET_SWZ(src->Swizzle, 0)),
t_swizzle(GET_SWZ(src->Swizzle, 0)),
t_src_class(src->File),
src->Negate ? NEGATE_XYZW : NEGATE_NONE) |
(src->RelAddr << 4);
}
static GLboolean valid_dst(struct r300_vertex_program_code *vp,
struct prog_dst_register *dst)
{
if (dst->File == PROGRAM_OUTPUT && vp->outputs[dst->Index] == -1) {
return GL_FALSE;
} else if (dst->File == PROGRAM_ADDRESS) {
assert(dst->Index == 0);
}
return GL_TRUE;
}
static void ei_vector1(struct r300_vertex_program_code *vp,
GLuint hw_opcode,
struct prog_instruction *vpi,
GLuint * inst)
{
inst[0] = PVS_OP_DST_OPERAND(hw_opcode,
GL_FALSE,
GL_FALSE,
t_dst_index(vp, &vpi->DstReg),
t_dst_mask(vpi->DstReg.WriteMask),
t_dst_class(vpi->DstReg.File));
inst[1] = t_src(vp, &vpi->SrcReg[0]);
inst[2] = __CONST(0, SWIZZLE_ZERO);
inst[3] = __CONST(0, SWIZZLE_ZERO);
}
static void ei_vector2(struct r300_vertex_program_code *vp,
GLuint hw_opcode,
struct prog_instruction *vpi,
GLuint * inst)
{
inst[0] = PVS_OP_DST_OPERAND(hw_opcode,
GL_FALSE,
GL_FALSE,
t_dst_index(vp, &vpi->DstReg),
t_dst_mask(vpi->DstReg.WriteMask),
t_dst_class(vpi->DstReg.File));
inst[1] = t_src(vp, &vpi->SrcReg[0]);
inst[2] = t_src(vp, &vpi->SrcReg[1]);
inst[3] = __CONST(1, SWIZZLE_ZERO);
}
static void ei_math1(struct r300_vertex_program_code *vp,
GLuint hw_opcode,
struct prog_instruction *vpi,
GLuint * inst)
{
inst[0] = PVS_OP_DST_OPERAND(hw_opcode,
GL_TRUE,
GL_FALSE,
t_dst_index(vp, &vpi->DstReg),
t_dst_mask(vpi->DstReg.WriteMask),
t_dst_class(vpi->DstReg.File));
inst[1] = t_src_scalar(vp, &vpi->SrcReg[0]);
inst[2] = __CONST(0, SWIZZLE_ZERO);
inst[3] = __CONST(0, SWIZZLE_ZERO);
}
static void ei_lit(struct r300_vertex_program_code *vp,
struct prog_instruction *vpi,
GLuint * inst)
{
//LIT TMP 1.Y Z TMP 1{} {X W Z Y} TMP 1{} {Y W Z X} TMP 1{} {Y X Z W}
inst[0] = PVS_OP_DST_OPERAND(ME_LIGHT_COEFF_DX,
GL_TRUE,
GL_FALSE,
t_dst_index(vp, &vpi->DstReg),
t_dst_mask(vpi->DstReg.WriteMask),
t_dst_class(vpi->DstReg.File));
/* NOTE: Users swizzling might not work. */
inst[1] = PVS_SRC_OPERAND(t_src_index(vp, &vpi->SrcReg[0]), t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 0)), // X
t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 3)), // W
PVS_SRC_SELECT_FORCE_0, // Z
t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 1)), // Y
t_src_class(vpi->SrcReg[0].File),
vpi->SrcReg[0].Negate ? NEGATE_XYZW : NEGATE_NONE) |
(vpi->SrcReg[0].RelAddr << 4);
inst[2] = PVS_SRC_OPERAND(t_src_index(vp, &vpi->SrcReg[0]), t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 1)), // Y
t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 3)), // W
PVS_SRC_SELECT_FORCE_0, // Z
t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 0)), // X
t_src_class(vpi->SrcReg[0].File),
vpi->SrcReg[0].Negate ? NEGATE_XYZW : NEGATE_NONE) |
(vpi->SrcReg[0].RelAddr << 4);
inst[3] = PVS_SRC_OPERAND(t_src_index(vp, &vpi->SrcReg[0]), t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 1)), // Y
t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 0)), // X
PVS_SRC_SELECT_FORCE_0, // Z
t_swizzle(GET_SWZ(vpi->SrcReg[0].Swizzle, 3)), // W
t_src_class(vpi->SrcReg[0].File),
vpi->SrcReg[0].Negate ? NEGATE_XYZW : NEGATE_NONE) |
(vpi->SrcReg[0].RelAddr << 4);
}
static void ei_mad(struct r300_vertex_program_code *vp,
struct prog_instruction *vpi,
GLuint * inst)
{
inst[0] = PVS_OP_DST_OPERAND(PVS_MACRO_OP_2CLK_MADD,
GL_FALSE,
GL_TRUE,
t_dst_index(vp, &vpi->DstReg),
t_dst_mask(vpi->DstReg.WriteMask),
t_dst_class(vpi->DstReg.File));
inst[1] = t_src(vp, &vpi->SrcReg[0]);
inst[2] = t_src(vp, &vpi->SrcReg[1]);
inst[3] = t_src(vp, &vpi->SrcReg[2]);
}
static void ei_pow(struct r300_vertex_program_code *vp,
struct prog_instruction *vpi,
GLuint * inst)
{
inst[0] = PVS_OP_DST_OPERAND(ME_POWER_FUNC_FF,
GL_TRUE,
GL_FALSE,
t_dst_index(vp, &vpi->DstReg),
t_dst_mask(vpi->DstReg.WriteMask),
t_dst_class(vpi->DstReg.File));
inst[1] = t_src_scalar(vp, &vpi->SrcReg[0]);
inst[2] = __CONST(0, SWIZZLE_ZERO);
inst[3] = t_src_scalar(vp, &vpi->SrcReg[1]);
}
static void t_inputs_outputs(struct r300_vertex_program_code *vp, struct gl_program * glvp)
{
int i;
int cur_reg;
GLuint OutputsWritten, InputsRead;
OutputsWritten = glvp->OutputsWritten;
InputsRead = glvp->InputsRead;
cur_reg = -1;
for (i = 0; i < VERT_ATTRIB_MAX; i++) {
if (InputsRead & (1 << i))
vp->inputs[i] = ++cur_reg;
else
vp->inputs[i] = -1;
}
cur_reg = 0;
for (i = 0; i < VERT_RESULT_MAX; i++)
vp->outputs[i] = -1;
assert(OutputsWritten & (1 << VERT_RESULT_HPOS));
if (OutputsWritten & (1 << VERT_RESULT_HPOS)) {
vp->outputs[VERT_RESULT_HPOS] = cur_reg++;
}
if (OutputsWritten & (1 << VERT_RESULT_PSIZ)) {
vp->outputs[VERT_RESULT_PSIZ] = cur_reg++;
}
/* If we're writing back facing colors we need to send
* four colors to make front/back face colors selection work.
* If the vertex program doesn't write all 4 colors, lets
* pretend it does by skipping output index reg so the colors
* get written into appropriate output vectors.
*/
if (OutputsWritten & (1 << VERT_RESULT_COL0)) {
vp->outputs[VERT_RESULT_COL0] = cur_reg++;
} else if (OutputsWritten & (1 << VERT_RESULT_BFC0) ||
OutputsWritten & (1 << VERT_RESULT_BFC1)) {
cur_reg++;
}
if (OutputsWritten & (1 << VERT_RESULT_COL1)) {
vp->outputs[VERT_RESULT_COL1] = cur_reg++;
} else if (OutputsWritten & (1 << VERT_RESULT_BFC0) ||
OutputsWritten & (1 << VERT_RESULT_BFC1)) {
cur_reg++;
}
if (OutputsWritten & (1 << VERT_RESULT_BFC0)) {
vp->outputs[VERT_RESULT_BFC0] = cur_reg++;
} else if (OutputsWritten & (1 << VERT_RESULT_BFC1)) {
cur_reg++;
}
if (OutputsWritten & (1 << VERT_RESULT_BFC1)) {
vp->outputs[VERT_RESULT_BFC1] = cur_reg++;
} else if (OutputsWritten & (1 << VERT_RESULT_BFC0)) {
cur_reg++;
}
for (i = VERT_RESULT_TEX0; i <= VERT_RESULT_TEX7; i++) {
if (OutputsWritten & (1 << i)) {
vp->outputs[i] = cur_reg++;
}
}
if (OutputsWritten & (1 << VERT_RESULT_FOGC)) {
vp->outputs[VERT_RESULT_FOGC] = cur_reg++;
}
}
static void translate_vertex_program(struct r300_vertex_program_compiler * compiler)
{
struct prog_instruction *vpi = compiler->program->Instructions;
compiler->code->pos_end = 0; /* Not supported yet */
compiler->code->length = 0;
t_inputs_outputs(compiler->code, compiler->program);
for (; vpi->Opcode != OPCODE_END; vpi++) {
GLuint *inst = compiler->code->body.d + compiler->code->length;
/* Skip instructions writing to non-existing destination */
if (!valid_dst(compiler->code, &vpi->DstReg))
continue;
if (compiler->code->length >= VSF_MAX_FRAGMENT_LENGTH) {
rc_error(&compiler->Base, "Vertex program has too many instructions\n");
return;
}
switch (vpi->Opcode) {
case OPCODE_ADD: ei_vector2(compiler->code, VE_ADD, vpi, inst); break;
case OPCODE_ARL: ei_vector1(compiler->code, VE_FLT2FIX_DX, vpi, inst); break;
case OPCODE_DP4: ei_vector2(compiler->code, VE_DOT_PRODUCT, vpi, inst); break;
case OPCODE_DST: ei_vector2(compiler->code, VE_DISTANCE_VECTOR, vpi, inst); break;
case OPCODE_EX2: ei_math1(compiler->code, ME_EXP_BASE2_FULL_DX, vpi, inst); break;
case OPCODE_EXP: ei_math1(compiler->code, ME_EXP_BASE2_DX, vpi, inst); break;
case OPCODE_FRC: ei_vector1(compiler->code, VE_FRACTION, vpi, inst); break;
case OPCODE_LG2: ei_math1(compiler->code, ME_LOG_BASE2_FULL_DX, vpi, inst); break;
case OPCODE_LIT: ei_lit(compiler->code, vpi, inst); break;
case OPCODE_LOG: ei_math1(compiler->code, ME_LOG_BASE2_DX, vpi, inst); break;
case OPCODE_MAD: ei_mad(compiler->code, vpi, inst); break;
case OPCODE_MAX: ei_vector2(compiler->code, VE_MAXIMUM, vpi, inst); break;
case OPCODE_MIN: ei_vector2(compiler->code, VE_MINIMUM, vpi, inst); break;
case OPCODE_MOV: ei_vector1(compiler->code, VE_ADD, vpi, inst); break;
case OPCODE_MUL: ei_vector2(compiler->code, VE_MULTIPLY, vpi, inst); break;
case OPCODE_POW: ei_pow(compiler->code, vpi, inst); break;
case OPCODE_RCP: ei_math1(compiler->code, ME_RECIP_DX, vpi, inst); break;
case OPCODE_RSQ: ei_math1(compiler->code, ME_RECIP_SQRT_DX, vpi, inst); break;
case OPCODE_SGE: ei_vector2(compiler->code, VE_SET_GREATER_THAN_EQUAL, vpi, inst); break;
case OPCODE_SLT: ei_vector2(compiler->code, VE_SET_LESS_THAN, vpi, inst); break;
default:
rc_error(&compiler->Base, "Unknown opcode %i\n", vpi->Opcode);
return;
}
compiler->code->length += 4;
if (compiler->Base.Error)
return;
}
}
struct temporary_allocation {
GLuint Allocated:1;
GLuint HwTemp:15;
struct prog_instruction * LastRead;
};
static void allocate_temporary_registers(struct r300_vertex_program_compiler * compiler)
{
struct prog_instruction *inst;
GLuint num_orig_temps = 0;
GLboolean hwtemps[VSF_MAX_FRAGMENT_TEMPS];
struct temporary_allocation * ta;
GLuint i, j;
compiler->code->num_temporaries = 0;
memset(hwtemps, 0, sizeof(hwtemps));
/* Pass 1: Count original temporaries and allocate structures */
for(inst = compiler->program->Instructions; inst->Opcode != OPCODE_END; inst++) {
GLuint numsrcs = _mesa_num_inst_src_regs(inst->Opcode);
GLuint numdsts = _mesa_num_inst_dst_regs(inst->Opcode);
for (i = 0; i < numsrcs; ++i) {
if (inst->SrcReg[i].File == PROGRAM_TEMPORARY) {
if (inst->SrcReg[i].Index >= num_orig_temps)
num_orig_temps = inst->SrcReg[i].Index + 1;
}
}
if (numdsts) {
if (inst->DstReg.File == PROGRAM_TEMPORARY) {
if (inst->DstReg.Index >= num_orig_temps)
num_orig_temps = inst->DstReg.Index + 1;
}
}
}
ta = (struct temporary_allocation*)memory_pool_malloc(&compiler->Base.Pool,
sizeof(struct temporary_allocation) * num_orig_temps);
memset(ta, 0, sizeof(struct temporary_allocation) * num_orig_temps);
/* Pass 2: Determine original temporary lifetimes */
for(inst = compiler->program->Instructions; inst->Opcode != OPCODE_END; inst++) {
GLuint numsrcs = _mesa_num_inst_src_regs(inst->Opcode);
for (i = 0; i < numsrcs; ++i) {
if (inst->SrcReg[i].File == PROGRAM_TEMPORARY)
ta[inst->SrcReg[i].Index].LastRead = inst;
}
}
/* Pass 3: Register allocation */
for(inst = compiler->program->Instructions; inst->Opcode != OPCODE_END; inst++) {
GLuint numsrcs = _mesa_num_inst_src_regs(inst->Opcode);
GLuint numdsts = _mesa_num_inst_dst_regs(inst->Opcode);
for (i = 0; i < numsrcs; ++i) {
if (inst->SrcReg[i].File == PROGRAM_TEMPORARY) {
GLuint orig = inst->SrcReg[i].Index;
inst->SrcReg[i].Index = ta[orig].HwTemp;
if (ta[orig].Allocated && inst == ta[orig].LastRead)
hwtemps[ta[orig].HwTemp] = GL_FALSE;
}
}
if (numdsts) {
if (inst->DstReg.File == PROGRAM_TEMPORARY) {
GLuint orig = inst->DstReg.Index;
if (!ta[orig].Allocated) {
for(j = 0; j < VSF_MAX_FRAGMENT_TEMPS; ++j) {
if (!hwtemps[j])
break;
}
if (j >= VSF_MAX_FRAGMENT_TEMPS) {
fprintf(stderr, "Out of hw temporaries\n");
} else {
ta[orig].Allocated = GL_TRUE;
ta[orig].HwTemp = j;
hwtemps[j] = GL_TRUE;
if (j >= compiler->code->num_temporaries)
compiler->code->num_temporaries = j + 1;
}
}
inst->DstReg.Index = ta[orig].HwTemp;
}
}
}
}
/**
* Vertex engine cannot read two inputs or two constants at the same time.
* Introduce intermediate MOVs to temporary registers to account for this.
*/
static GLboolean transform_source_conflicts(
struct radeon_transform_context *t,
struct prog_instruction* orig_inst,
void* unused)
{
struct prog_instruction inst = *orig_inst;
struct prog_instruction * dst;
GLuint num_operands = _mesa_num_inst_src_regs(inst.Opcode);
if (num_operands == 3) {
if (t_src_conflict(inst.SrcReg[1], inst.SrcReg[2])
|| t_src_conflict(inst.SrcReg[0], inst.SrcReg[2])) {
int tmpreg = radeonFindFreeTemporary(t);
struct prog_instruction * inst_mov = radeonAppendInstructions(t->Program, 1);
inst_mov->Opcode = OPCODE_MOV;
inst_mov->DstReg.File = PROGRAM_TEMPORARY;
inst_mov->DstReg.Index = tmpreg;
inst_mov->SrcReg[0] = inst.SrcReg[2];
reset_srcreg(&inst.SrcReg[2]);
inst.SrcReg[2].File = PROGRAM_TEMPORARY;
inst.SrcReg[2].Index = tmpreg;
}
}
if (num_operands >= 2) {
if (t_src_conflict(inst.SrcReg[1], inst.SrcReg[0])) {
int tmpreg = radeonFindFreeTemporary(t);
struct prog_instruction * inst_mov = radeonAppendInstructions(t->Program, 1);
inst_mov->Opcode = OPCODE_MOV;
inst_mov->DstReg.File = PROGRAM_TEMPORARY;
inst_mov->DstReg.Index = tmpreg;
inst_mov->SrcReg[0] = inst.SrcReg[1];
reset_srcreg(&inst.SrcReg[1]);
inst.SrcReg[1].File = PROGRAM_TEMPORARY;
inst.SrcReg[1].Index = tmpreg;
}
}
dst = radeonAppendInstructions(t->Program, 1);
*dst = inst;
return GL_TRUE;
}
static void insert_wpos(struct gl_program *prog, GLuint temp_index, int tex_id)
{
struct prog_instruction *vpi;
_mesa_insert_instructions(prog, prog->NumInstructions - 1, 2);
vpi = &prog->Instructions[prog->NumInstructions - 3];
vpi->Opcode = OPCODE_MOV;
vpi->DstReg.File = PROGRAM_OUTPUT;
vpi->DstReg.Index = VERT_RESULT_HPOS;
vpi->DstReg.WriteMask = WRITEMASK_XYZW;
vpi->DstReg.CondMask = COND_TR;
vpi->SrcReg[0].File = PROGRAM_TEMPORARY;
vpi->SrcReg[0].Index = temp_index;
vpi->SrcReg[0].Swizzle = SWIZZLE_XYZW;
++vpi;
vpi->Opcode = OPCODE_MOV;
vpi->DstReg.File = PROGRAM_OUTPUT;
vpi->DstReg.Index = VERT_RESULT_TEX0 + tex_id;
vpi->DstReg.WriteMask = WRITEMASK_XYZW;
vpi->DstReg.CondMask = COND_TR;
vpi->SrcReg[0].File = PROGRAM_TEMPORARY;
vpi->SrcReg[0].Index = temp_index;
vpi->SrcReg[0].Swizzle = SWIZZLE_XYZW;
++vpi;
vpi->Opcode = OPCODE_END;
}
static void pos_as_texcoord(struct gl_program *prog, int tex_id)
{
struct prog_instruction *vpi;
GLuint tempregi = prog->NumTemporaries;
prog->NumTemporaries++;
for (vpi = prog->Instructions; vpi->Opcode != OPCODE_END; vpi++) {
if (vpi->DstReg.File == PROGRAM_OUTPUT && vpi->DstReg.Index == VERT_RESULT_HPOS) {
vpi->DstReg.File = PROGRAM_TEMPORARY;
vpi->DstReg.Index = tempregi;
}
}
insert_wpos(prog, tempregi, tex_id);
prog->OutputsWritten |= 1 << (VERT_RESULT_TEX0 + tex_id);
}
/**
* The fogcoord attribute is special in that only the first component
* is relevant, and the remaining components are always fixed (when read
* from by the fragment program) to yield an X001 pattern.
*
* We need to enforce this either in the vertex program or in the fragment
* program, and this code chooses not to enforce it in the vertex program.
* This is slightly cheaper, as long as the fragment program does not use
* weird swizzles.
*
* And it seems that usually, weird swizzles are not used, so...
*
* See also the counterpart rewriting for fragment programs.
*/
static void fog_as_texcoord(struct gl_program *prog, int tex_id)
{
struct prog_instruction *vpi;
vpi = prog->Instructions;
while (vpi->Opcode != OPCODE_END) {
if (vpi->DstReg.File == PROGRAM_OUTPUT && vpi->DstReg.Index == VERT_RESULT_FOGC) {
vpi->DstReg.Index = VERT_RESULT_TEX0 + tex_id;
vpi->DstReg.WriteMask = WRITEMASK_X;
}
++vpi;
}
prog->OutputsWritten &= ~(1 << VERT_RESULT_FOGC);
prog->OutputsWritten |= 1 << (VERT_RESULT_TEX0 + tex_id);
}
#define ADD_OUTPUT(fp_attr, vp_result) \
do { \
if ((FpReads & (1 << (fp_attr))) && !(compiler->program->OutputsWritten & (1 << (vp_result)))) { \
OutputsAdded |= 1 << (vp_result); \
count++; \
} \
} while (0)
static void addArtificialOutputs(struct r300_vertex_program_compiler * compiler)
{
GLuint OutputsAdded, FpReads;
int i, count;
OutputsAdded = 0;
count = 0;
FpReads = compiler->state.FpReads;
ADD_OUTPUT(FRAG_ATTRIB_COL0, VERT_RESULT_COL0);
ADD_OUTPUT(FRAG_ATTRIB_COL1, VERT_RESULT_COL1);
for (i = 0; i < 7; ++i) {
ADD_OUTPUT(FRAG_ATTRIB_TEX0 + i, VERT_RESULT_TEX0 + i);
}
/* Some outputs may be artificially added, to match the inputs of the fragment program.
* Issue 16 of vertex program spec says that all vertex attributes that are unwritten by
* vertex program are undefined, so just use MOV [vertex_result], CONST[0]
*/
if (count > 0) {
struct prog_instruction *inst;
_mesa_insert_instructions(compiler->program, compiler->program->NumInstructions - 1, count);
inst = &compiler->program->Instructions[compiler->program->NumInstructions - 1 - count];
for (i = 0; i < VERT_RESULT_MAX; ++i) {
if (OutputsAdded & (1 << i)) {
inst->Opcode = OPCODE_MOV;
inst->DstReg.File = PROGRAM_OUTPUT;
inst->DstReg.Index = i;
inst->DstReg.WriteMask = WRITEMASK_XYZW;
inst->DstReg.CondMask = COND_TR;
inst->SrcReg[0].File = PROGRAM_CONSTANT;
inst->SrcReg[0].Index = 0;
inst->SrcReg[0].Swizzle = SWIZZLE_XYZW;
++inst;
}
}
compiler->program->OutputsWritten |= OutputsAdded;
}
}
#undef ADD_OUTPUT
static void nqssadceInit(struct nqssadce_state* s)
{
struct r300_vertex_program_compiler * compiler = s->UserData;
GLuint fp_reads;
fp_reads = compiler->state.FpReads;
{
if (fp_reads & FRAG_BIT_COL0) {
s->Outputs[VERT_RESULT_COL0].Sourced = WRITEMASK_XYZW;
s->Outputs[VERT_RESULT_BFC0].Sourced = WRITEMASK_XYZW;
}
if (fp_reads & FRAG_BIT_COL1) {
s->Outputs[VERT_RESULT_COL1].Sourced = WRITEMASK_XYZW;
s->Outputs[VERT_RESULT_BFC1].Sourced = WRITEMASK_XYZW;
}
}
{
int i;
for (i = 0; i < 8; ++i) {
if (fp_reads & FRAG_BIT_TEX(i)) {
s->Outputs[VERT_RESULT_TEX0 + i].Sourced = WRITEMASK_XYZW;
}
}
}
s->Outputs[VERT_RESULT_HPOS].Sourced = WRITEMASK_XYZW;
if (s->Program->OutputsWritten & (1 << VERT_RESULT_PSIZ))
s->Outputs[VERT_RESULT_PSIZ].Sourced = WRITEMASK_X;
}
static GLboolean swizzleIsNative(GLuint opcode, struct prog_src_register reg)
{
(void) opcode;
(void) reg;
return GL_TRUE;
}
void r3xx_compile_vertex_program(struct r300_vertex_program_compiler* compiler)
{
if (compiler->state.WPosAttr != FRAG_ATTRIB_MAX) {
pos_as_texcoord(compiler->program, compiler->state.WPosAttr - FRAG_ATTRIB_TEX0);
}
if (compiler->state.FogAttr != FRAG_ATTRIB_MAX) {
fog_as_texcoord(compiler->program, compiler->state.FogAttr - FRAG_ATTRIB_TEX0);
}
addArtificialOutputs(compiler);
{
struct radeon_program_transformation transformations[] = {
{ &r300_transform_vertex_alu, 0 },
};
radeonLocalTransform(compiler->program, 1, transformations);
}
if (compiler->Base.Debug) {
fprintf(stderr, "Vertex program after native rewrite:\n");
_mesa_print_program(compiler->program);
fflush(stdout);
}
{
/* Note: This pass has to be done seperately from ALU rewrite,
* otherwise non-native ALU instructions with source conflits
* will not be treated properly.
*/
struct radeon_program_transformation transformations[] = {
{ &transform_source_conflicts, 0 },
};
radeonLocalTransform(compiler->program, 1, transformations);
}
if (compiler->Base.Debug) {
fprintf(stderr, "Vertex program after source conflict resolve:\n");
_mesa_print_program(compiler->program);
fflush(stdout);
}
{
struct radeon_nqssadce_descr nqssadce = {
.Init = &nqssadceInit,
.IsNativeSwizzle = &swizzleIsNative,
.BuildSwizzle = NULL
};
radeonNqssaDce(compiler->program, &nqssadce, compiler);
/* We need this step for reusing temporary registers */
allocate_temporary_registers(compiler);
if (compiler->Base.Debug) {
fprintf(stderr, "Vertex program after NQSSADCE:\n");
_mesa_print_program(compiler->program);
fflush(stdout);
}
}
assert(compiler->program->NumInstructions);
translate_vertex_program(compiler);
compiler->code->InputsRead = compiler->program->InputsRead;
compiler->code->OutputsWritten = compiler->program->OutputsWritten;
}
|