summaryrefslogtreecommitdiff
path: root/src/mesa/shader/slang/MachineIndependent/ParseHelper.cpp
blob: d20aa2fa87594ae32893f9574e781f0387573a33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
//
//Copyright (C) 2002-2004  3Dlabs Inc. Ltd.
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//

#include "ParseHelper.h"
#include "Include/InitializeParseContext.h"
#include "osinclude.h"
#include <stdarg.h>
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////

//
// Look at a '.' field selector string and change it into offsets
// for a vector.
//
bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, int line)
{
    fields.num = (int) compString.size();
    if (fields.num > 4) {
        error(line, "illegal vector field selection", compString.c_str(), "");
        return false;
    }

    bool tooBig = false;

    for (int i = 0; i < fields.num; ++i) {
        switch (compString[i])  {
        case 'x': case 'r': case 's': case '0':
            fields.offsets[i] = 0;
            break;
        case 'y': case 'g': case 't': case '1':
            fields.offsets[i] = 1;
            break;
        case 'z': case 'b': case 'p': case '2':
            if (vecSize < 3)
                tooBig = true;
            fields.offsets[i] = 2;
            break;
        case 'w': case 'a': case 'q': case '3':
            if (vecSize < 4)
                tooBig = true;
            fields.offsets[i] = 3;
            break;
        default:
            error(line, "illegal vector field selection", compString.c_str(), "");
            return false;
        }
    }

    if (tooBig) {
        error(line, "vector field selection out of range",  compString.c_str(), "");
        return false;
    }

    return true;
}


//
// Look at a '.' field selector string and change it into offsets
// for a matrix.
//
bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, int line)
{
    fields.wholeRow = false;
    fields.wholeCol = false;
    fields.row = -1;
    fields.col = -1;

    if (compString.size() != 2) {
        error(line, "illegal length of matrix field selection", compString.c_str(), "");
        return false;
    }

    if (compString[0] == '_') {
        if (compString[1] < '0' || compString[1] > '3') {
            error(line, "illegal matrix field selection", compString.c_str(), "");
            return false;
        }
        fields.wholeCol = true;
        fields.col = compString[1] - '0';
    } else if (compString[1] == '_') {
        if (compString[0] < '0' || compString[0] > '3') {
            error(line, "illegal matrix field selection", compString.c_str(), "");
            return false;
        }
        fields.wholeRow = true;
        fields.row = compString[0] - '0';
    } else {
        if (compString[0] < '0' || compString[0] > '3' ||
            compString[1] < '0' || compString[1] > '3') {
            error(line, "illegal matrix field selection", compString.c_str(), "");
            return false;
        }
        fields.row = compString[0] - '0';
        fields.col = compString[1] - '0';
    }

    if (fields.row >= matSize || fields.col >= matSize) {
        error(line, "matrix field selection out of range", compString.c_str(), "");
        return false;
    }

    return true;
}

///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////

//
// Track whether errors have occurred.
//
void TParseContext::recover()
{
    recoveredFromError = true;
}

//
// Used by flex/bison to output all syntax and parsing errors.
//
void C_DECL TParseContext::error(TSourceLoc nLine, const char *szReason, const char *szToken, 
                                 const char *szExtraInfoFormat, ...)
{
    char szExtraInfo[400];
    va_list marker;
    
    va_start(marker, szExtraInfoFormat);
    
    _vsnprintf(szExtraInfo, sizeof(szExtraInfo), szExtraInfoFormat, marker);
    
    /* VC++ format: file(linenum) : error #: 'token' : extrainfo */
    infoSink.info.prefix(EPrefixError);
    infoSink.info.location(nLine);
    infoSink.info << "'" << szToken <<  "' : " << szReason << " " << szExtraInfo << "\n";
    
    va_end(marker);

    ++numErrors;
}

//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(int line, const char* op, TString left, TString right)
{
    error(line, "", op, "cannot convert from '%s' to '%s'",
          right.c_str(), left.c_str());
}

//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(int line, char* op, TString operand)
{
   error(line, " wrong operand type", op, 
          "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
          op, operand.c_str());
}

//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(int line, char* op, TString left, TString right)
{
    error(line, " wrong operand types ", op, 
            "no operation '%s' exists that takes a left-hand operand of type '%s' and "
            "a right operand of type '%s' (or there is no acceptable conversion)", 
            op, left.c_str(), right.c_str());
}

//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if the was an error.
//
bool TParseContext::lValueErrorCheck(int line, char* op, TIntermTyped* node)
{
    TIntermSymbol* symNode = node->getAsSymbolNode();
    TIntermBinary* binaryNode = node->getAsBinaryNode();

    if (binaryNode) {
        bool errorReturn;

        switch(binaryNode->getOp()) {
        case EOpIndexDirect:
        case EOpIndexIndirect:
        case EOpIndexDirectStruct:
            return lValueErrorCheck(line, op, binaryNode->getLeft());
        case EOpVectorSwizzle:
            errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
            if (!errorReturn) {
                int offset[4] = {0,0,0,0};

                TIntermTyped* rightNode = binaryNode->getRight();
                TIntermAggregate *aggrNode = rightNode->getAsAggregate();
                
                for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); 
                                               p != aggrNode->getSequence().end(); p++) {
                    int value = (*p)->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->iConst;
                    offset[value]++;     
                    if (offset[value] > 1) {
                        error(line, " l-value of swizzle cannot have duplicate components", op, "", "");

                        return true;
                    }
                }
            } 

            return errorReturn;
        default: 
            break;
        }
        error(line, " l-value required", op, "", "");

        return true;
    }


    const char* symbol = 0;
    if (symNode != 0)
        symbol = symNode->getSymbol().c_str();

    char* message = 0;
    switch (node->getQualifier()) {
    case EvqConst:          message = "can't modify a const";        break;
    case EvqConstReadOnly:  message = "can't modify a const";        break;
    case EvqAttribute:      message = "can't modify an attribute";   break;
    case EvqUniform:        message = "can't modify a uniform";      break;
    case EvqVaryingIn:      message = "can't modify a varying";      break;
    case EvqInput:          message = "can't modify an input";       break;
    case EvqFace:           message = "can't modify gl_FrontFace";   break;
    case EvqFragCoord:      message = "can't modify gl_FragCoord";   break;
    default:

        //
        // Type that can't be written to?
        //
        switch (node->getBasicType()) {
        case EbtSampler1D:
        case EbtSampler2D:
        case EbtSampler3D:
        case EbtSamplerCube:
        case EbtSampler1DShadow:
        case EbtSampler2DShadow:
            message = "can't modify a sampler";
            break;
        case EbtVoid:
            message = "can't modify void";
            break;
        default: 
            break;
        }
    }

    if (message == 0 && binaryNode == 0 && symNode == 0) {
        error(line, " l-value required", op, "", "");

        return true;
    }


    //
    // Everything else is okay, no error.
    //
    if (message == 0)
        return false;

    //
    // If we get here, we have an error and a message.
    //
    if (symNode)
        error(line, " l-value required", op, "\"%s\" (%s)", symbol, message);
    else
        error(line, " l-value required", op, "(%s)", message);

    return true;
}

//
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
//
// Returns true if the was an error.
//
bool TParseContext::constErrorCheck(TIntermTyped* node)
{
    if (node->getQualifier() == EvqConst)
        return false;

    error(node->getLine(), "constant expression required", "", "");

    return true;
}

//
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
//
// Returns true if the was an error.
//
bool TParseContext::integerErrorCheck(TIntermTyped* node, char* token)
{
    if (node->getBasicType() == EbtInt && node->getNominalSize() == 1)
        return false;

    error(node->getLine(), "integer expression required", token, "");

    return true;
}

//
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
//
// Returns true if the was an error.
//
bool TParseContext::globalErrorCheck(int line, bool global, char* token)
{
    if (global)
        return false;

    error(line, "only allowed at global scope", token, "");

    return true;
}

//
// For now, keep it simple:  if it starts "gl_", it's reserved, independent
// of scope.  Except, if the symbol table is at the built-in push-level,
// which is when we are parsing built-ins.
//
// Returns true if there was an error.
//
bool TParseContext::reservedErrorCheck(int line, const TString& identifier)
{
    if (symbolTable.atBuiltInLevel() ||
        identifier.substr(0, 3) != TString("gl_"))
        return false;

    error(line, "reserved built-in name", "gl_", "");

    return true;        
}

//
// Make sure there is enough data provided to the constructor to build
// something of the type of the constructor.  Also returns the type of
// the constructor.
//
// Returns true if there was an error in construction.
//
bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
{
    switch(op) {
    case EOpConstructInt:     *type = TType(EbtInt);                               break;
    case EOpConstructBool:    *type = TType(EbtBool);                              break;
    case EOpConstructFloat:   *type = TType(EbtFloat);                             break;
    case EOpConstructVec2:    *type = TType(EbtFloat, EvqTemporary, 2);            break;
    case EOpConstructVec3:    *type = TType(EbtFloat, EvqTemporary, 3);            break;
    case EOpConstructVec4:    *type = TType(EbtFloat, EvqTemporary, 4);            break;
    case EOpConstructBVec2:   *type = TType(EbtBool,  EvqTemporary, 2);            break;
    case EOpConstructBVec3:   *type = TType(EbtBool,  EvqTemporary, 3);            break;
    case EOpConstructBVec4:   *type = TType(EbtBool,  EvqTemporary, 4);            break;
    case EOpConstructIVec2:   *type = TType(EbtInt,   EvqTemporary, 2);            break;
    case EOpConstructIVec3:   *type = TType(EbtInt,   EvqTemporary, 3);            break;
    case EOpConstructIVec4:   *type = TType(EbtInt,   EvqTemporary, 4);            break;
    case EOpConstructMat2:    *type = TType(EbtFloat, EvqTemporary, 2, true);      break;
    case EOpConstructMat3:    *type = TType(EbtFloat, EvqTemporary, 3, true);      break;
    case EOpConstructMat4:    *type = TType(EbtFloat, EvqTemporary, 4, true);      break;
    case EOpConstructStruct:  *type = TType(function.getReturnType().getStruct(), function.getReturnType().getTypeName()); break;
    default:
        error(line, "expected constructor", "Internal Error", "");
        return true;
    }

    bool constructingMatrix = false;
    switch(op) {
    case EOpConstructMat2:
    case EOpConstructMat3:
    case EOpConstructMat4:
        constructingMatrix = true;
        break;
    default: 
        break;
    }

    //
    // Note: It's okay to have too many components available, but not okay to have unused
    // arguments.  'full' will go to true when enough args have been seen.  If we loop
    // again, there is an extra argument, so 'overfull' will become true.
    //

    int size = 0;
    bool constType = true;
    bool full = false;
    bool overFull = false;
    bool matrixInMatrix = false;
    for (int i = 0; i < function.getParamCount(); ++i) {
        size += function[i].type->getInstanceSize();
        if (constructingMatrix && function[i].type->isMatrix())
            matrixInMatrix = true;
        if (full)
            overFull = true;
        if (op != EOpConstructStruct && size >= type->getInstanceSize())
            full = true;
        if (function[i].type->getQualifier() != EvqConst)
            constType = false;
    }
    
    if (constType)
        type->changeQualifier(EvqConst);

    if (matrixInMatrix) {
        error(line, "constructing matrix from matrix", "constructor", "(reserved)");
        return true;
    }

    if (overFull) {
        error(line, "too many arguments", "constructor", "");
        return true;
    }

    if (size != 1 && size < type->getInstanceSize() || (size < 1) && op == EOpConstructStruct) {
        error(line, "not enough data provided for construction", "constructor", "");
        return true;
    }

    TIntermTyped* typed = node->getAsTyped();
    if (typed == 0) {
        error(line, "constructor argument does not have a type", "constructor", "");
        return true;
    }
    if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
        error(line, "cannot convert a sampler", "constructor", "");
        return true;
    }
    if (typed->getBasicType() == EbtVoid) {
        error(line, "cannot convert a void", "constructor", "");
        return true;
    }

    return false;
}

// This function checks to see if a void variable has been declared and raise an error message for such a case
//
// returns true in case of an error
//
bool TParseContext::voidErrorCheck(int line, const TString& identifier, const TPublicType& pubType)
{
    if (pubType.type == EbtVoid) {
        error(line, "illegal use of type 'void'", identifier.c_str(), "");
        return true;
    } 

    return false;
}

// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
//
// returns true in case of an error
//
bool TParseContext::boolErrorCheck(int line, const TIntermTyped* type)
{
    if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
        error(line, "boolean expression expected", "", "");
        return true;
    } 

    return false;
}

// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
//
// returns true in case of an error
//
bool TParseContext::boolErrorCheck(int line, const TPublicType& pType)
{
    if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) {
        error(line, "boolean expression expected", "", "");
        return true;
    } 

    return false;
}

bool TParseContext::samplerErrorCheck(int line, const TPublicType& pType, const char* reason)
{
    if (pType.type == EbtStruct) {
        if (containsSampler(*pType.userDef)) {
            error(line, reason, TType::getBasicString(pType.type), "(structure contains a sampler)");
        
            return true;
        }
        
        return false;
    } else if (IsSampler(pType.type)) {
        error(line, reason, TType::getBasicString(pType.type), "");

        return true;
    }

    return false;
}

bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType)
{
    if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) &&
        pType.type == EbtStruct) {
        error(line, "cannot be used with a structure", getQualifierString(pType.qualifier), "");
        
        return true;
    }

    if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
        return true;

    return false;
}

bool TParseContext::parameterSamplerErrorCheck(int line, TQualifier qualifier, const TType& type)
{
    if ((qualifier == EvqOut || qualifier == EvqInOut) && 
             type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
        error(line, "samplers cannot be output parameters", type.getBasicString(), "");
        return true;
    }

    return false;
}

bool TParseContext::containsSampler(TType& type)
{
    if (IsSampler(type.getBasicType()))
        return true;

    if (type.getBasicType() == EbtStruct) {
        TTypeList& structure = *type.getStruct();
        for (unsigned int i = 0; i < structure.size(); ++i) {
            if (containsSampler(*structure[i].type))
                return true;
        }
    }

    return false;
}

bool TParseContext::insertBuiltInArrayAtGlobalLevel()
{
    TString *name = NewPoolTString("gl_TexCoord");
    TSymbol* symbol = symbolTable.find(*name);
    if (!symbol) {
        error(0, "INTERNAL ERROR finding symbol", name->c_str(), "");
        return true;
    }
    TVariable* variable = static_cast<TVariable*>(symbol);

    TVariable* newVariable = new TVariable(name, variable->getType());

    if (! symbolTable.insert(*newVariable)) {
        delete newVariable;
        error(0, "INTERNAL ERROR inserting new symbol", name->c_str(), "");
        return true;
    }

    return false;
}

//
// Do all the semantic checking for declaring an array, with and 
// without a size, and make the right changes to the symbol table.
//
// size == 0 means no specified size.
//
// Returns true if there was an error.
//
bool TParseContext::arrayErrorCheck(int line, TString& identifier, TPublicType type, TIntermTyped* size)
{
    //
    // Don't check for reserved word use until after we know it's not in the symbol table,
    // because reserved arrays can be redeclared.
    //

    //
    // Can the type be an array?
    //
    if (type.array || type.qualifier == EvqAttribute || type.qualifier == EvqConst) {
        error(line, "cannot declare arrays of this type", TType(type).getCompleteString().c_str(), "");
        return true;
    }
    type.array = true;

    //
    // size will be 0 if there is no size declared, otherwise it contains the size
    // declared.
    //
    TIntermConstantUnion* constant = 0;
    if (size) {
        constant = size->getAsConstantUnion();
        if (constant == 0 || constant->getBasicType() != EbtInt || constant->getUnionArrayPointer()->iConst <= 0) {
            error(line, "array size must be a positive integer", identifier.c_str(), "");
            return true;
        }
    }

    bool builtIn = false; 
    bool sameScope = false;
    TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope);
    if (symbol == 0 || !sameScope) {
        if (reservedErrorCheck(line, identifier))
            return true;
        
        TVariable* variable = new TVariable(&identifier, TType(type));

        if (size)
            variable->getType().setArraySize(constant->getUnionArrayPointer()->iConst);

        if (! symbolTable.insert(*variable)) {
            delete variable;
            error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str(), "");
            return true;
        }
    } else {
        if (! symbol->isVariable()) {
            error(line, "variable expected", identifier.c_str(), "");
            return true;
        }

        TVariable* variable = static_cast<TVariable*>(symbol);
        if (! variable->getType().isArray()) {
            error(line, "redeclaring non-array as array", identifier.c_str(), "");
            return true;
        }
        if (variable->getType().getArraySize() > 0) {
            error(line, "redeclaration of array with size", identifier.c_str(), "");
            return true;
        }
        
        if (variable->getType() != TType(type)) {
            error(line, "redeclaration of array with a different type", identifier.c_str(), "");
            return true;
        }

        TType* t = variable->getArrayInformationType();
        while (t != 0) {
            if (t->getMaxArraySize() > constant->getUnionArrayPointer()->iConst) {
                error(line, "higher index value already used for the array", identifier.c_str(), "");
                return true;
            }
            t->setArraySize(constant->getUnionArrayPointer()->iConst);
            t = t->getArrayInformationType();
        }

        if (size)
            variable->getType().setArraySize(constant->getUnionArrayPointer()->iConst);
    } 

    if (voidErrorCheck(line, identifier, type))
        return true;

    return false;
}

bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, TSourceLoc line)
{
    bool builtIn = false;
    TSymbol* symbol = symbolTable.find(node->getSymbol(), &builtIn);
    if (symbol == 0) {
        error(line, " undeclared identifier", node->getSymbol().c_str(), "");
        return true;
    }
    TVariable* variable = static_cast<TVariable*>(symbol);

    type->setArrayInformationType(variable->getArrayInformationType());
    variable->updateArrayInformationType(type);

    // we dont want to update the maxArraySize when this flag is not set, we just want to include this 
    // node type in the chain of node types so that its updated when a higher maxArraySize comes in.
    if (!updateFlag)
        return false;

    size++;
    variable->getType().setMaxArraySize(size);
    type->setMaxArraySize(size);
    TType* tt = type;

    while(tt->getArrayInformationType() != 0) {
        tt = tt->getArrayInformationType();
        tt->setMaxArraySize(size);
    }

    return false;
}

//
// Do semantic checking for a variable declaration that has no initializer,
// and update the symbol table.
//
// Returns true if there was an error.
//
bool TParseContext::nonInitErrorCheck(int line, TString& identifier, TPublicType& type)
{
    if (reservedErrorCheck(line, identifier))
        recover();

    //
    // Make the qualifier make sense, error is issued in a little bit.
    //
    bool constError = false;
    if (type.qualifier == EvqConst) {
        type.qualifier = EvqTemporary;
        constError = true;
    }

    TVariable* variable = new TVariable(&identifier, TType(type));

    if (! symbolTable.insert(*variable)) {
        error(line, "redefinition", variable->getName().c_str(), "");
        delete variable;
        return true;
    }
    if (constError) {
        error(line, "variables with qualifier 'const' must be initialized", identifier.c_str(), "");
        return true;
    }

    if (voidErrorCheck(line, identifier, type))
        return true;

    return false;
}

bool TParseContext::paramErrorCheck(int line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
{    
    if (qualifier != EvqConst && qualifier != EvqTemporary) {
        error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier), "");
        return true;
    }
    if (qualifier == EvqConst && paramQualifier != EvqIn) {
        error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
        return true;
    }

    if (qualifier == EvqConst)
        type->changeQualifier(EvqConstReadOnly);
    else
        type->changeQualifier(paramQualifier);

    return false;
}

/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////

//
// Look up a function name in the symbol table, and make sure it is a function.
//
// Return the function symbol if found, otherwise 0.
//
const TFunction* TParseContext::findFunction(int line, TFunction* call, bool *builtIn)
{
    const TSymbol* symbol = symbolTable.find(call->getMangledName(), builtIn);

    if (symbol == 0) {        
        error(line, "no matching overloaded function found", call->getName().c_str(), "");
        return 0;
    }

    if (! symbol->isFunction()) {
        error(line, "function name expected", call->getName().c_str(), "");
        return 0;
    }
    
    const TFunction* function = static_cast<const TFunction*>(symbol);
    
    return function;
}
//
// Initializers show up in several places in the grammar.  Have one set of
// code to handle them here.
//
bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType, 
                                       TIntermTyped* initializer, TIntermNode*& intermNode)
{
    if (reservedErrorCheck(line, identifier))
        return true;

    if (voidErrorCheck(line, identifier, pType))
        return true;

    //
    // add variable to symbol table
    //
    TVariable* variable = new TVariable(&identifier, TType(pType));
    if (! symbolTable.insert(*variable)) {
        error(line, "redefinition", variable->getName().c_str(), "");
        return true;
        // don't delete variable, it's used by error recovery, and the pool 
        // pop will take care of the memory
    }

    //
    // identifier must be of type constant, a global, or a temporary
    //
    TQualifier qualifier = variable->getType().getQualifier();
    if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
        error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString(), "");
        return true;
    }
    //
    // test for and propagate constant
    //

    if (qualifier == EvqConst) {
        if (qualifier != initializer->getType().getQualifier()) {
            error(line, " assigning non-constant to", "=", "'%s'", variable->getType().getCompleteString().c_str());
            variable->getType().changeQualifier(EvqTemporary);
            return true;
        }
        if (TType(pType) != initializer->getType()) {
            error(line, " non-matching types for const initializer ", 
                variable->getType().getQualifierString(), "");
            variable->getType().changeQualifier(EvqTemporary);
            return true;
        }
        if (initializer->getAsConstantUnion()) { 
            constUnion* unionArray = variable->getConstPointer();            

            if (pType.size == 1 && TType(pType).getBasicType() != EbtStruct) {
                switch (pType.type ) {
                case EbtInt:
                    unionArray->iConst = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0].iConst;
                    break;
                case EbtFloat:
                    unionArray->fConst = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0].fConst;
                    break;
                case EbtBool:
                    unionArray->bConst = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0].bConst;
                    break;
                default:
                    error(line, " cannot initialize constant of this type", "", "");
                    return true;
                }
            } else {
                variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
            }
        } else if (initializer->getAsAggregate()) {
            bool returnVal = false;
            constUnion* unionArray = variable->getConstPointer();
            if (initializer->getAsAggregate()->getSequence().size() == 1 && initializer->getAsAggregate()->getSequence()[0]->getAsTyped()->getAsConstantUnion())  {
                returnVal = intermediate.parseConstTree(line, initializer, unionArray, initializer->getAsAggregate()->getOp(), symbolTable,  variable->getType(), true);
            }
            else {
                returnVal = intermediate.parseConstTree(line, initializer, unionArray, initializer->getAsAggregate()->getOp(), symbolTable, variable->getType());
            }
            intermNode = 0;
            constUnion *arrayUnion = unionArray;
            if (returnVal) {
                arrayUnion = 0;
                variable->getType().changeQualifier(EvqTemporary);
            } 
            return returnVal;
        } else if (initializer->getAsSymbolNode()) {
            const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol());
            const TVariable* tVar = static_cast<const TVariable*>(symbol);

            constUnion* constArray = tVar->getConstPointer();
            variable->shareConstPointer(constArray);
        } else {
            error(line, " assigning non-constant to", "=", "'%s'", variable->getType().getCompleteString().c_str());
            variable->getType().changeQualifier(EvqTemporary);
            return true;
        }
    }
 
    if (qualifier != EvqConst) {
        TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
        intermNode = intermediate.addAssign(EOpAssign, intermSymbol, initializer, line);
        if (intermNode == 0) {
            assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
            return true;
        }
    } else 
        intermNode = 0;

    return false;
}

//
// This method checks to see if the given aggregate node has all its children nodes as constants
// This method does not test if structure members are constant
//
bool TParseContext::canNodeBeRemoved(TIntermNode* childNode)
{
    TIntermAggregate *aggrNode = childNode->getAsAggregate();
    if (!aggrNode)
        return false;

    if (!aggrNode->isConstructor() || aggrNode->getOp() == EOpConstructStruct)
        return false;

    bool allConstant = true;

    // check if all the child nodes are constants so that they can be inserted into 
    // the parent node
    if (aggrNode) {
        TIntermSequence &childSequenceVector = aggrNode->getSequence() ;
        for (TIntermSequence::iterator p = childSequenceVector.begin(); 
                                    p != childSequenceVector.end(); p++) {
            if (!(*p)->getAsTyped()->getAsConstantUnion())
                return false;
        }
    }

    return allConstant;
}

// This function is used to test for the correctness of the parameters passed to various constructor functions
// and also convert them to the right datatype if it is allowed and required. 
//
// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
//
TIntermTyped* TParseContext::addConstructor(TIntermNode* node, TType* type, TOperator op, TFunction* fnCall, TSourceLoc line)
{
    if (node == 0)
        return 0;

    TIntermAggregate* aggrNode = node->getAsAggregate();
    
    TTypeList::iterator list;
    TTypeList* structure = 0;  // Store the information (vector) about the return type of the structure.
    if (op == EOpConstructStruct) {
        TType ttype = fnCall->getReturnType();
        structure = ttype.getStruct();
        list = (*structure).begin();
    }

    bool singleArg;
    if (aggrNode) {
        if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
            singleArg = true;
        else
            singleArg = false;
    } else
        singleArg = true;

    TIntermTyped *newNode;
    if (singleArg) {
        if (op == EOpConstructStruct) { 
            // If structure constructor is being called for only one parameter inside the structure,
            // we need to call constructStruct function once.
            if (structure->size() != 1) {
                error(line, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
                
                return 0;
            } else
                return constructStruct(node, (*list).type, 1, node->getLine(), false);
        } else {
            newNode =  constructBuiltIn(type, op, node, node->getLine(), false);
            if (newNode && newNode->getAsAggregate()) {
                if (canNodeBeRemoved(newNode->getAsAggregate()->getSequence()[0])) {
                    TIntermAggregate* returnAggNode = newNode->getAsAggregate()->getSequence()[0]->getAsAggregate();
                    newNode = intermediate.removeChildNode(newNode, type, returnAggNode);
                }
            }
            return newNode;
        }
    }
    
    //
    // Handle list of arguments.
    //
    TIntermSequence &sequenceVector = aggrNode->getSequence() ;    // Stores the information about the parameter to the constructor
    // if the structure constructor contains more than one parameter, then construct
    // each parameter
    if (op == EOpConstructStruct) {
        if (structure->size() != sequenceVector.size()) { // If the number of parameters to the constructor does not match the expected number of parameters
            error(line, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
            
            return 0;
        }
    }
    
    int paramCount = 0;  // keeps a track of the constructor parameter number being checked    
    
    // for each parameter to the constructor call, check to see if the right type is passed or convert them 
    // to the right type if possible (and allowed).
    // for structure constructors, just check if the right type is passed, no conversion is allowed.
    
    for (TIntermSequence::iterator p = sequenceVector.begin(); 
                                   p != sequenceVector.end(); p++, paramCount++) {
        bool move = false;
        if (op == EOpConstructStruct) {
            newNode = constructStruct(*p, (list[paramCount]).type, paramCount+1, node->getLine(), true);
            if (newNode)
                move = true;
        } else {
            newNode = constructBuiltIn(type, op, *p, node->getLine(), true);

            if (newNode) {
                if (canNodeBeRemoved(newNode))
                    intermediate.removeChildNode(sequenceVector, *type, paramCount, p, newNode->getAsAggregate());
                else
                    move = true;    
            } 
        }
        if (move) {
            sequenceVector.erase(p); 
            sequenceVector.insert(p, newNode);
        }
    }

    return intermediate.setAggregateOperator(aggrNode, op, line);
}

// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
// for the parameter to the constructor (passed to this function). Essentially, it converts
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a 
// float, then float is converted to int.
//
// Returns 0 for an error or the constructed node.
//
TIntermTyped* TParseContext::constructBuiltIn(TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset)
{
    TIntermTyped* newNode;
    TOperator basicOp;

    //
    // First, convert types as needed.
    //
    switch (op) {
    case EOpConstructVec2:
    case EOpConstructVec3:
    case EOpConstructVec4:
    case EOpConstructMat2:
    case EOpConstructMat3:
    case EOpConstructMat4:
    case EOpConstructFloat:
        basicOp = EOpConstructFloat;
        break;

    case EOpConstructIVec2:
    case EOpConstructIVec3:
    case EOpConstructIVec4:
    case EOpConstructInt:
        basicOp = EOpConstructInt;
        break;

    case EOpConstructBVec2:
    case EOpConstructBVec3:
    case EOpConstructBVec4:
    case EOpConstructBool:
        basicOp = EOpConstructBool;
        break;

    default:
        error(line, "unsupported construction", "", "");
        recover();

        return 0;
    }
    newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable);
    if (newNode == 0) {
        error(line, "can't convert", "constructor", "");
        return 0;
    }

    //
    // Now, if there still isn't an operation to do the construction, and we need one, add one.
    //
    
    // Otherwise, skip out early.
    if (subset || newNode != node && newNode->getType() == *type)
        return newNode;

    // setAggregateOperator will insert a new node for the constructor, as needed.
    return intermediate.setAggregateOperator(newNode, op, line);
}

// This function tests for the type of the parameters to the structures constructors. Raises
// an error message if the expected type does not match the parameter passed to the constructor.
//
// Returns 0 for an error or the input node itself if the expected and the given parameter types match.
//
TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, TSourceLoc line, bool subset)
{
    if (*type == node->getAsTyped()->getType()) {
        if (subset)
            return node->getAsTyped();
        else
            return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
    } else {
        error(line, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
                node->getAsTyped()->getType().getBasicString(), type->getBasicString());
        recover();
    }

    return 0;
}

//
// This function returns the tree representation for the vector field(s) being accessed from contant vector.
// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of 
// a constant matrix.
//
TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc line)
{
    TIntermTyped* typedNode;
    TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
    TIntermAggregate* aggregateNode = node->getAsAggregate();

    constUnion *unionArray;
    if (tempConstantNode) {
        unionArray = tempConstantNode->getUnionArrayPointer();

        if (!unionArray) {  // this error message should never be raised
            infoSink.info.message(EPrefixInternalError, "constUnion not initialized in addConstVectorNode function", line);
            recover();

            return node;
        }
    } else if (aggregateNode) { // if an aggregate node is present, the value has to be taken from the parse tree 
        // for a case like vec(4).xz
        unionArray = new constUnion[aggregateNode->getType().getInstanceSize()];                        
    
        bool returnVal = false;
        if (aggregateNode->getAsAggregate()->getSequence().size() == 1 && aggregateNode->getAsAggregate()->getSequence()[0]->getAsTyped()->getAsConstantUnion())  {
            returnVal = intermediate.parseConstTree(line, aggregateNode, unionArray, aggregateNode->getOp(), symbolTable,  aggregateNode->getType(), true);
        }
        else {
            returnVal = intermediate.parseConstTree(line, aggregateNode, unionArray, aggregateNode->getOp(), symbolTable, aggregateNode->getType());
        }

        if (returnVal)
            return 0;

    } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
        error(line, "No aggregate or constant union node available", "Internal Error", "");
        recover();

        return 0;
    }

    constUnion* constArray = new constUnion[fields.num];

    for (int i = 0; i < fields.num; i++) {
        if (fields.offsets[i] >= node->getType().getInstanceSize()) {
            error(line, "", "[", "vector field selection out of range '%d'", fields.offsets[i]);
            recover();
            fields.offsets[i] = 0;
        }
        
        constArray[i] = unionArray[fields.offsets[i]];

    } 
    typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
    return typedNode;
}

//
// This function returns the column being accessed from a constant matrix. The values are retrieved from
// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input 
// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a 
// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line)
{
    TIntermTyped* typedNode;
    TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
    TIntermAggregate* aggregateNode = node->getAsAggregate();

    if (index >= node->getType().getNominalSize()) {
        error(line, "", "[", "matrix field selection out of range '%d'", index);
        recover();
        index = 0;
    }

    if (tempConstantNode) {
         constUnion* unionArray = tempConstantNode->getUnionArrayPointer();
         int size = tempConstantNode->getType().getNominalSize();
         typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
    } else if (aggregateNode) {
        // for a case like mat4(5)[0]
        constUnion* unionArray = new constUnion[aggregateNode->getType().getInstanceSize()];                        
        int size = aggregateNode->getType().getNominalSize();
    
        bool returnVal = false;
        if (aggregateNode->getAsAggregate()->getSequence().size() == 1 && aggregateNode->getAsAggregate()->getSequence()[0]->getAsTyped()->getAsConstantUnion())  {
            returnVal = intermediate.parseConstTree(line, aggregateNode, unionArray, aggregateNode->getOp(), symbolTable,  aggregateNode->getType(), true);
        }
        else {
            returnVal = intermediate.parseConstTree(line, aggregateNode, unionArray, aggregateNode->getOp(), symbolTable, aggregateNode->getType());
        }

        if (!returnVal)
            typedNode = intermediate.addConstantUnion(&unionArray[size*index], aggregateNode->getType(), line);
        else 
            return 0;

    } else {
        error(line, "No Aggregate or Constant Union node available", "Internal Error", "");
        recover();

        return 0;
    }

    return typedNode;
}

//
// This function returns the value of a particular field inside a constant structure from the symbol table. 
// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
// function and returns the parse-tree with the values of the embedded/nested struct.
//
TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line)
{
    TTypeList* fields = node->getType().getStruct();
    TIntermTyped *typedNode;
    int instanceSize = 0;
    unsigned int index = 0;
    TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
    TIntermAggregate* aggregateNode = node->getAsAggregate();

    for ( index = 0; index < fields->size(); ++index) {
        if ((*fields)[index].type->getFieldName() == identifier) {
            break;
        } else {
            if ((*fields)[index].type->getStruct())
                //?? We should actually be calling getStructSize() function and not setStructSize. This problem occurs in case
                // of nested/embedded structs.                
                instanceSize += (*fields)[index].type->setStructSize((*fields)[index].type->getStruct());
            else
                instanceSize += (*fields)[index].type->getInstanceSize();
        }
    }

    if (tempConstantNode) {
         constUnion* constArray = tempConstantNode->getUnionArrayPointer();

         typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
    } else if (aggregateNode) {
        // for a case like constStruct(1,v3).i where structure fields is int i and vec3 v3.

        constUnion* unionArray = new constUnion[aggregateNode->getType().getStructSize()];                        
    
        bool returnVal = false;
        if (aggregateNode->getAsAggregate()->getSequence().size() == 1 && aggregateNode->getAsAggregate()->getSequence()[0]->getAsTyped()->getAsConstantUnion())  {
            returnVal = intermediate.parseConstTree(line, aggregateNode, unionArray, aggregateNode->getOp(), symbolTable,  aggregateNode->getType(), true);
        }
        else {
            returnVal = intermediate.parseConstTree(line, aggregateNode, unionArray, aggregateNode->getOp(), symbolTable, aggregateNode->getType());
        }

        if (!returnVal)
            typedNode = intermediate.addConstantUnion(unionArray+instanceSize, aggregateNode->getType(), line);
        else
            return 0;

    } else {
        error(line, "No Aggregate or Constant Union node available", "Internal Error", "");
        recover();

        return 0;
    }

    return typedNode;
}

//
// Initialize all supported extensions to disable
//
void TParseContext::initializeExtensionBehavior()
{
    //
    // example code: extensionBehavior["test"] = EDisable; // where "test" is the name of 
    // supported extension
    //
}

OS_TLSIndex GlobalParseContextIndex = OS_INVALID_TLS_INDEX;

bool InitializeParseContextIndex()
{
    if (GlobalParseContextIndex != OS_INVALID_TLS_INDEX) {
        assert(0 && "InitializeParseContextIndex(): Parse Context already initalised");
        return false;
    }

    //
    // Allocate a TLS index.
    //
    GlobalParseContextIndex = OS_AllocTLSIndex();
    
    if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) {
        assert(0 && "InitializeParseContextIndex(): Parse Context already initalised");
        return false;
    }

    return true;
}

bool InitializeGlobalParseContext()
{
    if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) {
        assert(0 && "InitializeGlobalParseContext(): Parse Context index not initalised");
        return false;
    }

    TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex));
    if (lpParseContext != 0) {
        assert(0 && "InitializeParseContextIndex(): Parse Context already initalised");
        return false;
    }

    TThreadParseContext *lpThreadData = new TThreadParseContext();
    if (lpThreadData == 0) {
        assert(0 && "InitializeGlobalParseContext(): Unable to create thread parse context");
        return false;
    }

    lpThreadData->lpGlobalParseContext = 0;
    OS_SetTLSValue(GlobalParseContextIndex, lpThreadData);

    return true;
}

TParseContextPointer& GetGlobalParseContext()
{
    //
    // Minimal error checking for speed
    //

    TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex));

    return lpParseContext->lpGlobalParseContext;
}

bool FreeParseContext()
{
    if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) {
        assert(0 && "FreeParseContext(): Parse Context index not initalised");
        return false;
    }

    TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex));
    if (lpParseContext)
        delete lpParseContext;

    return true;
}

bool FreeParseContextIndex()
{
    OS_TLSIndex tlsiIndex = GlobalParseContextIndex;

    if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) {
        assert(0 && "FreeParseContextIndex(): Parse Context index not initalised");
        return false;
    }

    GlobalParseContextIndex = OS_INVALID_TLS_INDEX;

    return OS_FreeTLSIndex(tlsiIndex);
}