1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/*
* Mesa 3-D graphics library
* Version: 6.5
*
* Copyright (C) 2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
//
// From Shader Spec, ver. 1.20, rev. 6
//
//
// 8.5 Matrix Functions
//
mat2x3 matrixCompMult (mat2x3 m, mat2x3 n) {
return mat2x3 (m[0] * n[0], m[1] * n[1]);
}
mat2x4 matrixCompMult (mat2x4 m, mat2x4 n) {
return mat2x4 (m[0] * n[0], m[1] * n[1]);
}
mat3x2 matrixCompMult (mat3x2 m, mat3x2 n) {
return mat3x2 (m[0] * n[0], m[1] * n[1], m[2] * n[2]);
}
mat3x4 matrixCompMult (mat3x4 m, mat3x4 n) {
return mat3x4 (m[0] * n[0], m[1] * n[1], m[2] * n[2]);
}
mat4x2 matrixCompMult (mat4x2 m, mat4x2 n) {
return mat4x2 (m[0] * n[0], m[1] * n[1], m[2] * n[2], m[3] * n[3]);
}
mat4x3 matrixCompMult (mat4x3 m, mat4x3 n) {
return mat4x3 (m[0] * n[0], m[1] * n[1], m[2] * n[2], m[3] * n[3]);
}
mat2 outerProduct (vec2 c, vec2 r) {
return mat2 (
c.x * r.x, c.y * r.x,
c.x * r.y, c.y * r.y
);
}
mat3 outerProduct (vec3 c, vec3 r) {
return mat3 (
c.x * r.x, c.y * r.x, c.z * r.x,
c.x * r.y, c.y * r.y, c.z * r.y,
c.x * r.z, c.y * r.z, c.z * r.z
);
}
mat4 outerProduct (vec4 c, vec4 r) {
return mat4 (
c.x * r.x, c.y * r.x, c.z * r.x, c.w * r.x,
c.x * r.y, c.y * r.y, c.z * r.y, c.w * r.y,
c.x * r.z, c.y * r.z, c.z * r.z, c.w * r.z,
c.x * r.w, c.y * r.w, c.z * r.w, c.w * r.w
);
}
mat2x3 outerProduct (vec3 c, vec2 r) {
return mat2x3 (
c.x * r.x, c.y * r.x, c.z * r.x
c.x * r.y, c.y * r.y, c.z * r.y
);
}
mat3x2 outerProduct (vec2 c, vec3 r) {
return mat3x2 (
c.x * r.x, c.y * r.x,
c.x * r.y, c.y * r.y,
c.x * r.z, c.y * r.z
);
}
mat2x4 outerProduct (vec4 c, vec2 r) {
return mat2x4 (
c.x * r.x, c.y * r.x, c.z * r.x, c.w * r.x,
c.x * r.y, c.y * r.y, c.z * r.y, c.w * r.y
);
}
mat4x2 outerProduct (vec2 c, vec4 r) {
return mat4x2 (
c.x * r.x, c.y * r.x,
c.x * r.y, c.y * r.y,
c.x * r.z, c.y * r.z,
c.x * r.w, c.y * r.w,
);
}
mat3x4 outerProduct (vec4 c, vec3 r) {
return mat3x4 (
c.x * r.x, c.y * r.x, c.z * r.x, c.w * r.x,
c.x * r.y, c.y * r.y, c.z * r.y, c.w * r.y,
c.x * r.z, c.y * r.z, c.z * r.z, c.w * r.z
);
}
mat4x3 outerProduct (vec3 c, vec4 r) {
return mat4x3 (
c.x * r.x, c.y * r.x, c.z * r.x,
c.x * r.y, c.y * r.y, c.z * r.y,
c.x * r.z, c.y * r.z, c.z * r.z,
c.x * r.w, c.y * r.w, c.z * r.w
);
}
mat2 transpose (mat2 m) {
return mat2 (
m[0].x, m[1].x,
m[0].y, m[1].y
);
}
mat3 transpose (mat3 m) {
return mat3 (
m[0].x, m[1].x, m[2].x,
m[0].y, m[1].y, m[2].y,
m[0].z, m[1].z, m[2].z
);
}
mat4 transpose (mat4 m) {
return mat4 (
m[0].x, m[1].x, m[2].x, m[3].x,
m[0].y, m[1].y, m[2].y, m[3].y,
m[0].z, m[1].z, m[2].z, m[3].z,
m[0].w, m[1].w, m[2].w, m[3].w
);
}
mat2x3 transpose (mat3x2 m) {
return mat2x3 (
m[0].x, m[1].x, m[2].x,
m[0].y, m[1].y, m[2].y
);
}
mat3x2 transpose (mat2x3 m) {
return mat3x2 (
m[0].x, m[1].x,
m[0].y, m[1].y,
m[0].z, m[1].z
);
}
mat2x4 transpose (mat4x2 m) {
return mat2x4 (
m[0].x, m[1].x, m[2].x, m[3].x,
m[0].y, m[1].y, m[2].y, m[3].y
);
}
mat4x2 transpose (mat2x4 m) {
return mat4x2 (
m[0].x, m[1].x,
m[0].y, m[1].y,
m[0].z, m[1].z,
m[0].w, m[1].w
);
}
mat3x4 transpose (mat4x3 m) {
return mat3x4 (
m[0].x, m[1].x, m[2].x, m[3].x,
m[0].y, m[1].y, m[2].y, m[3].y,
m[0].z, m[1].z, m[2].z, m[3].z
);
}
mat4x3 transpose (mat3x4 m) {
return mat4x3 (
m[0].x, m[1].x, m[2].x,
m[0].y, m[1].y, m[2].y,
m[0].z, m[1].z, m[2].z,
m[0].w, m[1].w, m[2].w
);
}
|